Dr. Babasaheb Ambedkar Technological University
(Established as a University of Technology in the State of Maharashtra)
(under Maharashtra Act No. XXIX of 2014)
P.O. Lonere, Dist. Raigad, Pin 402 103, Maharashtra
Telephone and Fax.: 02140 - 275142
www.dbatu.ac.in

COURSE STRUCTURE AND SYLLABUS

For

B. Tech. Electronics Engineering Programme With effect from the Academic Year

2017-2018 (First Year), 2018-2019 (Second Year), 2019-2020 (Third Year), 2019-2021 (Final Year).

B. Tech (Electronics & Telecommunication Engineering) / B. Tech (Electronics Engineering) Curriculum for Semester III [Second Year]

Sr.	Course Code	Course Title	Hou	rs Per V	Veek	Evalu	ation Sc	heme	Total	Credits
No.	Course Code	Course Title	L	T	P	MSE	CA	ESE	Marks	Credits
1	BTBSC301	Engineering Mathematics-III	3	1	0	20	20	60	100	4
2	BTEXC302	Analog Circuits	2	1	0	20	20	60	100	3
3	BTEXC303	Electronic Devices & Circuits	2	1	0	20	20	60	100	3
4	BTEXC304	Network Analysis	2	1	0	20	20	60	100	3
5	BTEXC305	Digital Logic Design	2	1	0	20	20	60	100	3
6	BTHM3401	Basic Human Rights	2	0	0		50		50	(Audit)
7	BTEXL307	Analog Circuits Lab	0	0	2		60	40	100	1
8	BTEXL308	Electronic Devices & Circuits Lab	0	0	2		60	40	100	1
9	BTEXL309	Network Analysis Lab	0	0	2		60	40	100	1
10	BTEXL310	Digital Logic Design Lab	0	0	2		60	40	100	1
11	BTEXW311	Electronics Workshop	0	0	2		60	40	100	1
12	BTES211P	Field Training/ Internship/Industrial Training Evaluation				-1		50	50	1
	Total				10	100	450	550	1100	22

B. Tech (Electronics & Telecommunication Engineering) / B. Tech (Electronics Engineering) Curriculum for Semester IV [Second Year]

			Hour	rs Per W	⁷ eek	Evalu	ation Sch	neme	Total	
Sr. No	Course Code	Course Title	L	T	P	MSE	CA	ESE	Marks	Credits
1	BTEXC401	Electrical Machines and Instruments	2	1	0	20	20	60	100	3
2	BTEXC402	Analog Communication Engineering	2	1	0	20	20	60	100	3
3	BTEXC403	Microprocessor	2	1	0	20	20	60	100	3
4	BTEXC404	Signals and Systems	2	1	0	20	20	60	100	3
5	BTID405	Product Design Engineering	1	0	2	30	30	40	100	2
6	BTBSC406	Numerical Methods and Computer Programming	2	1	0	20	20	60	100	3
7	BTEXL407	Electrical Machines and Instruments Lab	0	0	2		60	40	100	1
8	BTEXL408	Analog Communication Engineering Lab	0	0	2		60	40	100	1
9	BTEXL409	Microprocessor Lab	0	0	2		60	40	100	1
10	BTEXL410	Signals and Systems Lab	0	0	2		60	40	100	1
11	BTHML411	Soft-Skill Development	0	0	2		60	40	100	1

12	BTEXF412	Field Training/ Internship/Industrial Training (Minimum 4 weeks which can be completed partially in third semester or fourth semester or in at one time)		1	-		-1			1 (To be evaluated in V th Semester)
		11	05	12	130	430	540	1100	22	

B. Tech (Electronics Engineering)

Proposed Curriculum for Semester V [Third Year]

CN	Commo Codo	True of Course	Course Title	Hour	s Per V	Veek	Evalua	tion Sch	eme	Total Marks	Credits	
S. N.	Course Code	Type of Course	Course Title	L	T	P	MSE	CA	ESE	Total Marks	Creatts	
1	BTEXC501	Professional Core Course 1	Electromagnetic Field Theory	2	1	0	20	20	60	100	3	
2	BTEXC502	Professional Core Course 2	Control System Engineering	2	1	0	20	20	60	100	3	
3	BTEXC503	Professional Core Course 3	Microelectronics	3	0	0	20	20	60	100	3	
4	BTEXC504	Professional Core Course 4	Digital Signal Processing	2	1	0	20	20	60	100	3	
5	BTEXC505	Professional Core Course 5	Microcontroller and its Applications	3	0	0	20	20	60	100	3	
	BTEXPE506A		Probability Theory and Random Processes									
6	BTEXPE506B	Program Elective	NSQF (Level 7 Course)	3	0	0	20	20	60	100	3	
	BTEXPE506C	Course 1	Data Structures and Algorithms Using Java Programming	3	3			20	20		100	5
	BTEXPE506D		Introduction to MEMS									

	BTEXPE506E	Audio and Video Processing								
7	BTEXL507	Control System Engineering Lab	0	0	2	1	30	20	50	1
8	BTEXL508	Digital Signal Processing Lab	0	0	2		30	20	50	1
9	BTEXL509	Microcontroller and its Applications Lab	0	0	2		30	20	50	1
10	BTEXP510	Mini Project		0	2		30	20	50	1
11	BTEXS511	Seminar	0	0	2		30	20	50	1
12	BTEXF412	Field Training/ Internship/Industrial Training Evaluation						50	50	1
		Total	15	03	10	120	270	510	900	24

B. Tech (Electronics Engineering)

Proposed Curriculum for Semester VI [Third Year]

S.N.	Course Code	Type of Course	Course Title	Hours	Per W	eek	Evaluat	tion Sch	eme	Total	Credits
S.IV.	Course Code	Type of Course	Course Title	${f L}$	T	P	MSE	CA ESE		Marks	Credits
1	BTEXC601	Professional Core Course 1	Computer Architecture	3	0	0	20	20	60	100	3
2	BTEXC602	Professional Core Course 2	Power Electronics	3	0	0	20	20	60	100	3
	BTEXPE603A		Digital Communication								
3	BTEXPE603B	Program Elective Course 2	Computer Network and Cloud Computing	3	0	0	20	20	60	100	3
	BTEXPE603C	Course 2	Nano Electronics								
	BTEXPE603D		Web Development and Design								
	BTEXOE604A		Digital System Design								
4	BTEXOE604B	Open Elective Course	Neural Networks and Fuzzy Systems	3	0	0	20	20	60	100	3
	BTEXOE604C	1	NSQF (Level 7 Course)	3			20	20	00	100	3
	BTEXOE604D		Analog Integrated Circuit Design								
5	BTEXOE605A	Open Elective Course	Embedded System Design	2	0	0	20	20	60	100	2
<i>y</i>	BTEXOE605B	2	Electronics System Design	2		U	20	20	00	100	۷

	BTEXOE605C		Project Management and Operation Research								
	BTEXOE605D		Android Programming								
6	BTHM606	Humanities & Social Science including Management Courses	Employability & Skill Development	2	0	0	1	50	0	50	2
7	BTEXL607	Power Electronics Lab	Power Electronics Lab		0	2		30	20	50	1
8	BTEXL608	Program Elective Course	2 Lab	0	0	2		30	20	50	1
9	BTEXL609	Open Elective Course	l Lab	0	0	2		30	20	50	1
10	BTEXP610	Community Project		0	0	2		30	20	50	1
11	BTEXS611	Seminar		0	0	2		30	20	50	1
12	BTEXF612	Field Training/ Interns (Minimum 4 weeks)	-1		1	1	1		1	1*	
	Total					10	100	300	400	800	21

Program Elective 2	Open Elective 1	Open Elective 2
(A) Digital Communication	(A) Digital System Design	(A) Embedded System Design
(B) Computer Network and Cloud Computing	(B) Neural Networks and Fuzzy Systems	(B) Electronics System Design
(C) Nano Electronics	(C) NSQF (Level 7 Course)	(C) Project Management and Operation Research
(D) Web Development and Design	(D) Analog Integrated Circuit Design	(D) Android Programming

^{*} To be evaluated in VIIth Semester

B. Tech (Electronics Engineering)

Proposed Curriculum for Semester VII [Final Year]

G N		T. 8.0	C TIM	Hour	s Per V	Veek	Evalua	ation Sc	heme	Total	G 114
S.N.	Course Code	Type of Course	Course Title	L	T	P	MSE	CA	ESE	Marks	Credits
1	BTEXC701	Professional Core Course 1	Antennas and Wave Propagation	3	0	0	20	20	60	100	3
2	BTEXPE702	Program Elective 3	Group A	3	0	0	20	20	60	100	3
3	BTEXPE703	Program Elective 4	Group B	3	0	0	20	20	60	100	3
4	BTEXPE704	Program Elective 5	Group C	3	0	0	20	20	60	100	3
5	BTHM705	Humanities & Social Science including Management Courses	Financial management	2	0	0		50		50	2
6	BTEXL706	Program Elective 3 La	b	0	0	2		30	20	50	1
7	BTEXL707	Program Elective 4 La	b	0	0	2		30	20	50	1
8	BTEXL708	Program Elective 5 La	b	0	0	2		30	20	50	1
9	BTEXP709	Project Part-I		0	0	8		50	50	100	4
10	BTEXS710	Seminar		0	0	2		30	20	50	1
11	BTEXF612	Field Training/ Interns Evaluation	hip/Industrial Training						50	50	1
		14	0	16	80	300	420	800	23		

Program Elective 3 (Group A)	Program Elective 4 (Group B)	Program Elective 5 (Group C)
(A) Digital Image Processing	(A) IOT 4.0	(A) Microwave Theory & Techniques
(B) Data Compression and Encryption /Cryptography	(B) Wireless Sensor Networks	(B) Satellite Communication
(C) NSQF (Level 7 Course)	(C) CMOS Design	(C) Fiber Optic Communication
(D) Parallel Processing	(D) Process Instrumentation	(D) Wireless Communication

B. Tech (Electronics Engineering)

Course Structure for Semester VIII [Fourth Year] w.e.f. 2020-2021

Course Code	Type of Course	- I Course Line			y ng ie	Ev	Credits			
			L	T	P	MSE	CA	ESE	Total	
 Introduction to Internet of Things Computer Vision and Image Processing Biomedical Signal Processing Industrial Automation and Control Cryptography and Network Security Digital IC Design # Student to opt any two subjects from above list 			3	-		20*	20*	60*	100	3
			3	-		20*	20*	60*	100	3
BTMEP803	Project Par	t-II or Internship*			30			100	150	15
		Total						220	350	21

^{*} Six months of Internship in the industry

Mapping of Courses with MOOCs Platform SWYAM / NPTEL

No	Course Name	Duration	Institute Offering	Name of Professor
		(Weeks)	Course	
1	Introduction to internet of things	12	IIT Kharagpur	Prof. Sudip Misra
2	Computer Vision and Image	12	IIT Gandhinagar	Prof. M. K. Bhuyan
	Processing			
3	Biomedical Signal Processing	12	IIT Kharagpur	Prof. Sudipta
				Mukhopadhyay
4	Industrial Automation and Control	12	IIT Kharagpur	Prof. Siddhartha
				Mukhopadhyay
5	Cryptography & Network Security	12	IIT Kharagpur	Prof. Sourav
				Mukhopadhyay
6	Digital IC Design	12	IIT Madras	Prof. Janakiraman

^{*}Students doing project at institute will have to appear for CA/MSE/ESE

^{*} Student doing project at Industry will give NPTEL examination / Examination conducted by university i.e. CA/MSE/ESE

[#]These subjects are to be studied on self-study mode using SWAYAM/NPTEL/Any other source

[#] Teacher who work as a facilitator for the course should be allotted 3 hrs/week load.

[#] Project Load: 2hrs/week/project.

BTBSC301

Engineering Mathematics-III

4 Credits

Second Year B. Tech Classes (Common to all Branches) Semester: III

Prerequisites: Differential and Integral Calculus, Taylor series and Infinite series, Differential equations of first order and first degree, Fourier series, Vector algebra, Algebra of complex numbers.

Course Objectives:

After completion of the course, students will have adequate background, conceptual clarity and knowledge of appropriate solution techniques related to:

- 1. Linear differential equations of higher order using analytical methods and numerical methods applicable to Control systems and Network analysis.
- 2. Transforms such as Fourier transform, Laplace transform and applications to Communication systems and Signal processing.
- 3. Vector differentiation and integration required in Electromagnetics and Wave theory.
- 4. Complex functions, conformal mappings, contour integration applicable to Electrostatics, Digital filters, Signal and Image processing.

Course Outcomes:

On completion of the course, students will be able to:

- 1. Solve higher order linear differential equation using appropriate techniques for modeling and analyzing electrical circuits.
- 2. Solve problems related to Fourier transform, Laplace transform and applications to Communication systems and Signal processing.
- 3. Obtain Interpolating polynomials, numerically differentiate and integrate functions, numerical solutions of differential equations using single step and multi-step iterative methods used in modern scientific computing.
- 4. Perform vector differentiation and integration, analyze the vector fields and apply to Electromagnetic fields.
- 5. Analyze conformal mappings, transformations and perform contour integration of complex functions in the study of electrostatics and signal processing.

Laplace Transform

Definition – conditions for existence ; Transforms of elementary functions; Properties of Laplace transforms - Linearity property, first shifting property, second shifting property, transforms of functions multiplied by tⁿ, scale change property, transforms of functions divided by t, transforms of integral of functions, transforms of derivatives; Evaluation of integrals by using Laplace transform; Transforms of some special functions- periodic function, Heaviside-unit step function, Dirac delta function.

Inverse Laplace Transform

Introductory remarks; Inverse transforms of some elementary functions; General methods of finding inverse transforms; Partial fraction method and Convolution Theorem for finding inverse Laplace transforms; Applications to find the solutions of linear differential equations and simultaneous linear differential equations with constant coefficients.

Fourier Transform

Definitions – integral transforms; Fourier integral theorem (without proof); Fourier sine and cosine integrals; Complex form of Fourier integrals; Fourier sine and cosine transforms; Properties of Fourier transforms; Parseval's identity for Fourier Transforms.

Partial Differential Equations and Their Applications

Formation of Partial differential equations by eliminating arbitrary constants and functions; Equations solvable by direct integration; Linear equations of first order (Lagrange's linear equations); Method of separation of variables – applications to find solutions of one dimensional heat flow equation $\left(\frac{\partial u}{\partial t} = c^2 \frac{^2u}{\partial x^2}\right)$, and two dimensional heat flow equation (i.e. Laplace equation : $\frac{^2u}{\partial x^2} + \frac{^2u}{\partial x^2} = 0$).

UNIT - 5 07 Hours

Functions of Complex Variables (Differential calculus)

Limit and continuity of f(z); Derivative of f(z); Analytic functions; Cauchy- Riemann equations in Cartesian and polar forms; Harmonic functions in Cartesian form; Mapping: Translation, magnification and rotation, inversion and reflection, bilinear transformation; Conformal mapping.

UNIT - 6 07 Hours

Functions of Complex Variables (Integral calculus)

Cauchy's integral theorem; Cauchy's integral formula; Residues; Cauchy's residue theorem (All theorems without proofs).

TEXT BOOKS

- 1. Higher Engineering Mathematics by B. S. Grewal, Khanna Publishers, New Delhi.
- 2. Advanced Engineering Mathematics by Erwin Kreyszig, John Wiley & Sons, New York.
- 3. A Course in Engineering Mathematics (Vol III) by Dr. B. B. Singh, Synergy Knowledge ware, Mumbai.
- 4. A Text Book of Applied Mathematics (Vol I & II) by P. N. Wartikar and J. N. Wartikar, Pune Vidyarthi Griha Prakashan, Pune.
- 5. Higher Engineering Mathematics by H. K. Das and Er. Rajnish Verma, S. Chand & CO. Pvt. Ltd., New Delhi.

REFERENCE BOOKS

- 1. Higher Engineering Mathematics by B. V. Ramana, Tata McGraw-Hill Publications, New Delhi.
- 2. A Text Book of Engineering Mathematics by Peter O' Neil, Thomson Asia Pte Ltd., Singapore.
- 3. Advanced Engineering Mathematics by C. R. Wylie & L. C. Barrett, Tata Mcgraw-Hill Publishing Company Ltd., New Delhi.
- 4. Integral Transforms and Their Engineering Applications by Dr. B. B. Singh, Synergy . Knowledge ware, Mumbai.

5. Integral Transforms by I. N. Sneddon, Tata McGraw-Hill, New York.

GENERAL INSTRUCTIONS

- 1. The tutorial classes in Engineering Mathematics-III are to be conducted batch wise. Each class should be divided into three batches for the purpose.
- 2. The internal assessment of the students for 20 marks will be done based on assignments, surprise tests, quizzes, innovative approach to problem solving and percentage attendance.
- 3. The minimum number of assignments should be eight covering all topics.

BTEXC302 Analog Circuits 3 Credits

Course Objectives:

- 1. To understand characteristics of IC and Op-Amp and identify the internal structure.
- 2. To introduce various manufacturing techniques.
- 3. To study various op-amp parameters and their significance for Op-Amp.
- 4. To learn frequency response, transient response and frequency compensation techniques for Op-Amp.
- 5. To analyze and identify linear and nonlinear applications of Op-Amp.
- 6. To understand functionalities of PLL.

Course Outcomes:

On completion of the course, students will be able to:

- 1. Understand the characteristics of IC and Op-Amp and identify the internal structure.
- 2. Understand and identify various manufacturing techniques.
- 3. Derive and determine various performances based parameters and their significance for Op-Amp.
- 4. Comply and verify parameters after exciting IC by any stated method.
- 5. Analyze and identify the closed loop stability considerations and I/O limitations.
- 6. Analyze and identify linear and nonlinear applications of Op-Amp.
- 7. Understand and verify results (levels of V & I) with hardware implementation.
- 8. Implement hardwired circuit to test performance and application for what it is being designed.
- 9. Understand and apply the functionalities of PLL.

UNIT - 1 06 Hours

OP-AMP Basics

Block diagram of OP-AMP, Differential Amplifier configurations, Differential amplifier analysis for dual-input balanced-output configurations, Need and types of level shifter, current mirror circuits. Feedback topologies: Voltage series and voltage shunt feedback amplifier and its effect on R_i , R_o , bandwidth and voltage gain.

UNIT - 2 06 Hours

Linear Applications of OP-AMP

Inverting and non-inverting amplifier configurations, voltage follower, summing, averaging scaling amplifier, difference amplifier, integrator, differentiator, and instrumentation amplifiers.

UNIT - 3 06 Hours

Non-linear Applications of OP-AMP

Introduction to comparator, characteristics and applications of comparator, Schmitt trigger, clippers and clampers, voltage limiters, square wave generator, triangular wave generator, Need of precision rectifiers, Half wave and Full wave precision rectifiers.

UNIT - 4 06 Hours

Converters using OP-AMP

V-F, I-V and V-I converter, Digital-to-analog converters (DAC): Weighted resistor, R-2R ladder, resistor string etc. Analog-to-digital converters (ADC): Single slope, dual slope, successive approximation, flash type.

UNIT - 5 06 Hours

Oscillators

Principle of Oscillators, Barkhausen criterion, Oscillator types: RC oscillators (design of phase shift, Wien bridge etc.), LC oscillators (design of Hartley, Colpitts, Clapp etc.), non-sinusoidal oscillators, and voltage controlled oscillators.

UNIT - 6 06 Hours

Active filters and PLL

Design guidelines of Active filters: Low pass, high pass, band pass and band stop filters, block diagram of PLL and its function.

TEXT/REFERENCE BOOKS

- 1. Ramakant A. Gaikwad, "Op Amps and Linear Integrated Circuits", Pearson Education 2000.
- 2. Salivahanan and Kanchana Bhaskaran, "Linear Integrated Circuits", Tata McGraw Hill, India 2008.
- 3. George Clayton and Steve Winder, "Operational Amplifiers", 5th Edition Newnes.
- 4. Sergio Franco, "Design with Operational Amplifiers and Analog Integrated Circuits", Tata McGraw Hill.
- 5. Bali, "Linear Integrated Circuits", McGraw Hill 2008.
- 6. Gray, Hurst, Lewise, Meyer, "Analysis & Design of Analog Integrated Circuits", Wiley Publications on Education.

BTEXC303 Electronic Devices & Circuits 3 Credits

Prerequisites:

Basic knowledge of Semiconductor Physics.

Course Objectives:

- 1. To introduce semiconductor devices FET and MOSFET, their characteristics, operations, circuits and applications
- 2. To introduce concepts of both positive and negative feedback in electronic circuits
- 3. To analyze and interpret FET and MOSFET circuits for small signal at low and high frequencies
- 4. To simulate electronics circuits using computer simulation software and verify desired results
- 5. To study the different types of voltage regulators.

Course Outcomes:

On completion of the course, students will be able to:

- 1. Comply and verify parameters after exciting devices by any stated method.
- 2. Implement circuit and test the performance.
- 3. Analyze small signal model of FET and MOSFET.
- 4. Explain behavior of FET at low frequency.
- 5. Design an adjustable voltage regulator circuits.

UNIT - 1 06 Hours

JFET

Introduction to JFET, Types, Construction, Operation, Static Characteristics, Pinch off voltage, FET Volt-Ampere characteristics, FET Configurations (CS/CD/CG) and their Comparison. Biasing of FET (Self).FET as an amplifier and its analysis (CS) and its frequency response, Small signal model, FET as High Impedance circuits

UNIT - 2 06 Hours

MOSFET& its DC Analysis

Basics of MOS Transistor operation, Construction of n-channel E-MOSFET, E-MOSFET characteristics & parameters, non-ideal voltage current characteristics viz. Finite output resistance, body effect, sub-threshold conduction, breakdown effects and temperature effects. Common source circuit, Load Line & Modes of operation, common MOSFET configurations: DC Analysis, constant current source biasing, MOSFET as switch, diode/active resistor, Current sink and source, current mirror, Voltage references, Basic principle of band gap reference, CMOS Inverter as amplifier: Active load, Current source and Push pull configurations.

UNIT - 3 06 Hours

Electronics Amplifiers

Classification of amplifiers, Fundamentals of Low noise and Power amplifiers. Feedback amplifiers: Feedback concept and topologies, Effect of feedback on terminal characteristics of amplifiers, feedback amplifier analysis, cascade amplifiers, DC Amplifiers.

UNIT - 4 06 Hours

Oscillators

Barkhausen criterion, stability with feedback. Classification of oscillators, RC Oscillators: FET RC Phase Shift oscillator, Wein bridge oscillator, LC Oscillators: Hartley and Colpitts oscillators, Crystal oscillators, UJT Relaxation oscillator.

UNIT - 5 06 Hours

Multivibrators

IC555 Block diagram, Types of Multivibrators: Astable, Monostable and Bistable, Operation of Multivibrators using FETs and IC555. Applications of IC555 in Engineering.

UNIT - 6 06 Hours

Voltage Regulator

Block diagram of an adjustable three terminal positive and negative regulators (317,337) typical connection diagram, current boosting, Low drop out voltage regulators, Introduction to Switch Mode Power supply (SMPS), Block diagram of SMPS, Types of SMPS. Comparison of Linear Power supply and SMPS.

TEXT/REFERENCE BOOKS

- Millman Halkias, "Integrated Electronics-Analog and Digital Circuits and Systems", Tata McGraw Hill, 2000
- Donald Neaman, "Electronic Circuit Analysis and Design", 3rd Edition, Tata McGraw Hill
- 3. Brijesh Iyer, S. L. Nalbalwar, R. Dudhe, "Electronics Devices & Circuits", Synergy Knowledgeware Mumbai, 2017. ISBN:9789383352616
- 4. David A. Bell, "Electronic Devices and Circuits", 5th Edition, Oxford Press
- 5. R. L. Boylstad, L. Nashlesky, "Electronic Devices and circuits Theory", 9thEdition, Prentice Hall of India, 2006.

BTEXC304 Network Analysis 3 Credits

Course Objectives:

- 1. To learn about the basic laws of electric circuits as well as the key fundamentals of the communication channels, namely transmission lines.
- 2. To understand the need of simplification techniques of complicated circuits
- 3. To learn about the comprehensive insight into the principle techniques available for characterizing circuits, networks and their implementation in practice.
- 4. To learn about the use of mathematics, need of different transforms and usefulness of differential equations for analysis of networks.
- 5. To train the students for handling analog filter design through theory of NA along with practical, this is basic requirement of signal processing field.

Course Outcomes:

On completion of the course, students will be able to:

- 1. Apply knowledge of mathematics to solve numerical based on network simplification and it will be used to analyze the same.
- 2. Design passive filters and attenuators theoretically and practically. To apply knowledge for design of active filters as well as digital filters and even extend this to advance adaptive filters.
- 3. Identify issues related to transmission of signals, analyze different RLC networks.
- 4. Find technology recognition for the benefit of the society.

UNIT - 1 06 Hours

Basic Circuit Analysis and Simplification Techniques

Basic circuit elements, Simplification of networks, Equivalent 'T' and 'II' networks of any complicated network, Voltage and Current laws (KVL/KCL), Network Analysis: Mesh, Super mesh, Node and Super Node analysis. Principle of duality, Source transformation and source shifting, Network Theorems such as Superposition, Thevenin's, Norton's and Maximum Power Transfer Theorems.

Note: Above circuit analysis, mentioned in this Unit-1, is for AC network only.

UNIT - 2 06 Hours

Frequency Selective Networks

Significance of Quality factor, Series Resonance: Resonating frequency, Reactance curves, Variation of circuit parameters such as impedance, phase angle, voltage and current with frequency; Bandwidth, Selectivity, Magnification factor, Parallel resonance: Resonant frequency, Variation circuit parameters such as admittance, phase angle, voltage and current with frequency; Bandwidth and selectivity. Analysis of parallel resonating circuit with resistance present in both branches (inductive and capacitive branches) and tank circuit, Effect of generator resistance on BW & Selectivity, Comparison and applications of series and parallel resonant circuits.

UNIT - 3 06 Hours

Electrical Network Parameters and Passive Filters

Classifications: Symmetrical and Asymmetrical networks. Properties of two port Network :(i) Symmetrical Networks (T and Π only): Characteristics impedance and propagation constant in terms of circuit components, open and short circuit parameters (ii) Asymmetrical

Networks: Image Impedance and Iterative Impedance. Passive Filters: Filter fundamentals, Introduction to Neper and Decibel, Relation between Neper and Decibel, Constant K-LPF, HPF, BPF and BSF, m-derived LPF and HPF, Terminating half sections, Concept of composite filters. Attenuators: Symmetrical T and Π type attenuators, Ladder attenuator.

Steady State and Transient Response

DC and AC response of R-L, R-C and RLC circuits, Analysis of electrical circuits using Laplace Transform.

UNIT - 5 06 Hours

Two Port Network Parameters and Functions

Terminal characteristics of network: Z, Y, h, ABCD Parameters; Reciprocity and Symmetry conditions, Applications of the parameters. Network functions for one port and two port networks, Pole-zeros of network functions and network stability.

UNIT - 6 06 Hours

Transmission Line Theory

Types of Transmission lines, Transmission Line Equation, Equivalent circuits, Primary and Secondary line constants, Terminations of transmission lines, VSWR and Reflection Coefficient, Impedance matching, Transmission line measurements using Smith chart.

TEXT/REFERENCE BOOKS

- 1. D Roy Choudary, "Network and Systems" 1st edition, New Age International, 1988
- 2. John D. Ryder, "Network Lines and Fields" 2nd edition, PHI, 1955
- 3. C. P. Kuriakose, "Circuit Theory Continuous and Discrete Time System, Elements of Network Synthesis" PHI
- 4. W.H. Hayt Kemmerly, "Engineering Circuit Analysis", 5th Edition, Tata McGraw Hill Publications, 1993.
- 5. M. E. Van Valkenburg, "Network Analysis", 3rd Edition, Pearson, 2004. 6. Boylestead, "Introductory Circuit Analysis", 4th edition, Charles & Merrill, 1982. 7. Royal Signal Handbook on Line Communication.

BTEXC305	Digital Logic Design	3 Credits
----------	----------------------	-----------

Course Objectives:

- 1. To acquaint the students with the fundamental principles of two-valued logic and various devices used to implement logical operations on variables.
- 2. To lay the foundation for further studies in areas such as communication, VHDL, computer.

Course Outcomes:

On completion of the course, students will be able to:

- 1. Use the basic logic gates and various reduction techniques of digital logic circuit in detail.
- 2. Design combinational and sequential circuits.
- 3. Design and implement hardware circuit to test performance and application.
- 4. Understand the architecture and use of VHDL for basic operations and Simulate using simulation software.

UNIT - 1 06 Hours

Combinational Logic Design

Standard representations for logic functions, k map representation of logic functions (SOP and POS forms), minimization of logical functions for min-terms and max-terms (upto 4 variables), don't care conditions, Design Examples: Arithmetic Circuits, BCD - to - 7 segment decoder, Code converters. Adders and their use as subtractor, look ahead carry, ALU, Digital Comparator, Parity generators/checkers, Design of Multiplexers and Demultiplexers, Decoders.

UNIT - 2 06 Hours

Sequential Logic Design

1 Bit Memory Cell, Clocked SR, JK, MS J-K flip flop, D and T flip-flops. Use of preset and clear terminals, Excitation Table for flip flops, Conversion of flip flops. Application of Flip-flops: Registers, Shift registers, Counters (ring counters, twisted ring counters), Sequence Generators, ripple counters, up/down counters, synchronous counters, definitions of lock out, Clock Skew, and Clock jitter.

UNIT - 3 06 Hours

State Machines

Basic design steps- State diagram, State table, State reduction, State assignment, Mealy and Moore machines representation, Implementation, finite state machine implementation, Sequence detector.

UNIT - 4 06 Hours

Digital Logic Families

Classification of logic families, Characteristics of digital ICs-Speed of operation, power dissipation, figure of merit, fan in, fan out, current and voltage parameters, noise immunity, operating temperatures and power supply requirements. TTL logic, Operation of TTL NAND gate, active pull up, wired AND, open collector output, unconnected inputs. Tri-State logic. CMOS logic – CMOS inverter, NAND, NOR gates, unconnected inputs, wired logic, open drain output. Interfacing CMOS and TTL, Comparison table of Characteristics of TTL, CMOS, ECL, RTL, I²L and DCTL

UNIT - 5 06 Hours

Programmable Logic Devices and Semiconductor Memories

Programmable logic devices: Detail architecture, Study of PROM, PAL, PLA, Designing combinational circuits using PLDs. General Architecture of FPGA and CPLD Semiconductor memories: memory organization and operation, expanding memory size, Classification and characteristics of memories, RAM, ROM, EPROM, EPROM, NVRAM, SRAM, DRAM.

UNIT - 6 06 Hours

Introduction to VHDL

Behavioral – data flow, and algorithmic and structural description, lexical elements, data objects types, attributes, operators; VHDL coding examples, combinational circuit design examples in VHDL and simulation.

TEXT/REFERENCE BOOKS

1. R.P. Jain, —Modern digital electronics, 3rd edition, 12threprint Tata McGraw Hill Publication, 2007.

- 2. M. Morris Mano, —Digital Logic and Computer Design 4th edition, Prentice Hall of India, 2013.
- 3. Anand Kumar, —Fundamentals of digital circuits 1st edition, Prentice Hall of India, 2001.
- 4. Pedroni V.A., "Digital Circuit Design with VHDL", Prentice Hall India, 2nd 2001 Edition.

BTHM3401 Basic Human Rights Audit

Course Objectives:

- 1. To work for ensuring that basic human rights are respected everywhere.
- 2. To cooperate to avoid compromising on human rights for economic or political expediency
- 3. To recognize democratic institutions as a fundamental human right
- 4. To work towards the sovereignty and self-determination of entities with historical, cultural and ecological identity.
- 5. To actively engage with the Government of India and other countries to promote human rights education.
- 6. To bring diplomatic and commercial pressures on regimes that violates human rights, to ensure that they respect the basic rights of their citizens.
- 7. To keep the interests of disempowered communities foremost in all dealings with countries in which human rights violations occur
- 8. To develop a more distinctive and effective role for the International Court of Justice in the field of human rights
- 9. To promote a culture for educating the citizenry that cultivation and promotion of human rights culture is the sine qua non for the smooth functioning of the organs of a democratic State and for the kind of development that results into overall development of the society.
- 10. To train the young men and women for facing the challenges of the pluralistic society and the rising conflicts and tensions in the name of particularistic loyalties to caste, religion, region and culture
- 11. To study the effects of draconian laws and unlawful use of State's machinery and force by the enforcement agencies.

Course Outcomes:

On completion of the course, students will be able to:

- 1. Simply put, human rights education is all learning that develops the knowledge, skills, and values of human rights.
- 2. Strengthen the respect for human rights and fundamental freedoms.
- 3. Enable all persons to participate effectively in a free society.
- 4. Learn about human rights principles, such as the universality, indivisibility, and interdependence of human rights.
- 5. Learn about regional, national, state, and local law that reinforces international human rights law.
- 6. Learn and know about and being able to use global, regional, national, and local human rights instruments and mechanisms for the protection of human rights.

UNIT - 1 06 Hours

The Basic Concepts

Individual, Group, Civil Society, State, Equality, Justice, Human Values: - Humanity, Virtues, Compassion.

UNIT - 2 06 Hours

Human Rights and Human Duties

Origin, Civil and Political Rights, Contribution of American Bill of Rights, French Revolution, Declaration of Independence, Rights of Citizen, Rights of working and Exploited people, Fundamental Rights and Economic program, India's Charter of freedom

UNIT - 3 06 Hours

Society, Religion, Culture, and their Inter-Relationship

Impact of Social Structure on Human behavior, Roll of Socialization in Human Values, Science and Technology, Modernization, Globalization, and Dehumanization.

UNIT - 4 06 Hours

Social Structure and Social Problems

Social and Communal Conflicts and Social Harmony, Rural Poverty, Unemployment, Bonded Labour, Migrant workers and Human Rights Violations, Human Rights of mentally and physically challenged

UNIT - 5 06 Hours

State, Individual Liberty, Freedom and Democracy

The changing of state with special reference to developing countries, Concept of development under development and Social action, need for Collective action in developing societies and methods of Social action, NGOs and Human Rights in India: - Land, Water, Forest issues.

UNIT - 6 06 Hours

Human Rights in Indian Constitution and Law

The constitution of India:

- (i) Preamble
- (ii) Fundamental Rights
- (iii) Directive principles of state policy
- (iv) Fundamental Duties
- (v) Some other provisions

Universal declaration of Human Rights and Provisions of India, Constitution and Law, National Human Rights Commission and State Human Rights Commission.

TEXT/REFERENCE BOOKS

- Shastry, T. S. N., India and Human rights: Reflections, Concept Publishing Company India (P Ltd.), 2005.
- 2. Nirmal, C.J., Human Rights in India: Historical, Social and Political Perspectives (Law in India), Oxford India.

BTEXC401 Electrical Machines and Instruments 3 Credits

Course Objectives:

- 1. Model and Analyze the performance of different types of DC machines
- 2. Learn the applications of DC generators
- 3. Analyze the performance of different types of DC motors
- 4. Analyze the performance of different types of Sensors and Transducers

- 5. Familiarize with the applications of DC machines
- 6. To prepare students to perform the analysis of any electromechanical system.
- 7. To empower students to understand the working of electrical equipment used in everyday life.

Course Outcomes:

On completion of the course, students will be able to:

- 1. The ability to formulate and then analyze the working of any electrical machine using mathematical model under loaded and unloaded conditions.
- 2. The skill to analyze the response of any electrical machine.
- 3. The ability to troubleshoot the operation of an electrical machine.
- 4. The ability to select a suitable measuring instrument for a given application.
- 5. The ability to estimate and correct deviations in measurements due to the influence of the instrument and due to the accuracy of the instrument.

UNIT - 1 06 Hours

DC Machines

DC machines construction, working principle (motor & generator), EMF equation of DC Machine (motor and generator), Types and its characteristics of DC machines (motor and generator), back emf, starters of dc machine, Speed control of DC motor Breaking of DC motor, applications of DC machines (motor and generator).

UNIT - 2 06 Hours

Induction Motor and Synchronous Motor

Induction Motor: Construction, working principle, types, torque equation, torque slip characteristics, power stages, losses and efficiency, starters speed control, breaking, applications. **Synchronous motor:** Construction, working principle, starting methods, effect of load, hunting, V-curve, synchronous condenser, applications.

UNIT - 3 06 Hours

Special Purpose Machines

Construction, working and application of steeper motor, variable reluctance motor, servo motor, FHP motor, hysteresis, repulsion, linear IM.

UNIT - 4 06 Hours

Sensors and Transducers

Classification selection of transducers strain gauges, LVDT, Temperature transducers, piezoelectric, photosensitive transducers, Hall Effect transducers, proximity devices Digital transducers need of signal conditioning and types, interfacing techniques of transducers with microprocessor and controller.

UNIT - 5 06 Hours

Industrial Measurement and Industrial Applications

Measurement of vibration, electrical telemetry thickness, humidity, thermal conductivity and gas analysis emission computerized tomography, smoke and fire detection, burglar alarm, object counter level measurement, on /off timers, RTC, sound level meter, tachometer, VAW meter.

UNIT - 6 06 Hours

I/O Devices

Recorder X- Y plotters and its applications, optical oscillograph.

TEXT/REFERENCE BOOKS

- 1. A course in Electrical and Electronic Measurement and Instrumentation" by A. K. Sawhney (Publisher name: Dhanpat Rai & Co.)
- 2. Electronics Instrumentation by H.S. Kalsi (Publisher McGraw Hill)
- 3. Electrical Machines by Ashfaqu Husain, Dhanpatrai and publication
- 4. Instrumentation Devices System edition C. S. Rajan, G. R. sharma
- 5. Abhijit Chakrabarti & Sudipta Debnath, "Electrical Machines", Tata McGraw-hill Publication.
- 6. William H Hayt, Jack E Kimmerly and Steven M. Durbin, "Engineering Circuit Analysis", Tata McGraw Hill.
- 7. A.E. Fitzgerald, Charles Kingsley & Jr. Stephen D. Umans, "Electrical Machinery", Tata McGraw-hill Publication 6th Edition.
- 8. I.J Nagarath & D.P Kothari, "Electrical Machines", Tata McGraw-hill Publication 4th Edition.

- 9. T. J. E. Miller, "Brushless permanent-magnet and reluctance motor drives", Oxford University Press (1989).
- 10. Ned Mohan, "Electric Machines and Drives": A first course, Wiley.
- 11. B. L. Theraja, "Electrical technology" volume 2, S. Chand.

BTEXC402

Analog Communication Engineering

3 Credits

Course Objectives:

- 1. To introduce the concepts of analog communication systems.
- 2. To equip students with various issues related to analog communication such as modulation, demodulation, transmitters and receivers and noise performance.
- 3. To understand the concepts of modulation and demodulation techniques of angle modulation (frequency and phase)

Course Outcomes:

On completion of the course, students will be able to:

- 1. Understand and identify the fundamental concepts and various components of analog communication systems.
- 2. Understand the concepts of modulation and demodulation techniques.
- 3. Design circuits to generate modulated and demodulated wave.
- 4. Equip students with various issues related to analog communication such as modulation, demodulation, transmitters and receivers and noise performance.
- 5. Understand the concepts of modulation and demodulation techniques of angle modulation (frequency and phase).
- 6. Explain signal to noise ratio, noise figure and noise temperature for single and cascaded stages in a communication system.
- 7. Develop the ability to compare and contrast the strengths and weaknesses of various communication systems.

UNIT - 1

06 Hours

Introduction to Communication System

Block schematic of communication system, Simplex and duplex systems, Modes of communication: Broadcast and point to point communication, Necessity of modulation,

Classification of modulation, sampling theorem and pulse analog modulation, multiplexing: TDM, FDM.

UNIT - 2 06 Hours

Amplitude Modulation

Introduction, Mathematical analysis and expression for AM, Modulation index, Frequency spectrum and bandwidth of AM, Power calculations, Generation of AM using nonlinear property, Low and high level modulation, Balance Modulator.

Types of AM: DSB-FC, DSB-SC, SSB-SC, ISB and VSB, their generation methods and comparison.

UNIT - 3 06 Hours

Angle Modulation

Introduction, Mathematical analysis of FM and PM, Modulation index for FM and PM, Frequency spectrum and bandwidth of FM, Narrow band and wide band FM, Direct and indirect methods of FM generation, Pre emphasis and de-emphasis, Comparison of AM, FM and PM.

UNIT - 4 06 Hours

Radio Receivers and Demodulators

Introduction, Performances characteristic of receivers: Sensitivity, Selectivity, Fidelity, Image frequency and IFRR, Tracking and Double spotting, TRF, Super heterodyne receivers, RF amplifier, Local oscillator and mixer, IF amplifier, AGC.

UNIT - 5 06 Hours

AM and FM Detectors

AM Detectors: Envelop detector and practical diode detector.

FM Detectors: Slope detector, phase discriminator and ratio detector.

UNIT - 6 06 Hours

Noise

Introduction, Sources of noise, Classification of noise, Noise calculations (thermal noise), SNR, Noise figure, Noise Factor, Noise Temperature.

TEXT/REFERENCE BOOKS

- Kennedy, "Electronics Communications Systems", McGraw-Hill New Delhi-1997, 4th Edition.
- 2. Anokh Singh, "Principles of communication engineering" S.Chand
- 3. Roddy & Coolen, "Electronic communication" PHI
- 4. Taub & Schilling "Principles of communication systems" Tata Mc Graw Hill
- 5. Beasley & Miller, "Modern Electronic Communication", Prentice-Hall India-2006, 8th Edition.
- 6. Wayne Tomasi, "Electronic Communication Systems", Pearson Education-2005, 5th Edition.
- 7. R. G. Gupta, "Audio & Video Systems" Tata McGraw-Hill New Delhi-2008.

BTEXC403 Microprocessor 3 Credits

Course Objectives:

- 1. Objective of this course is to introduce to the students the fundamentals of microprocessor.
- 2. After learning Microprocessor course, students will get advantage to pursue higher studies in Embedded Systems or employment in core industries.
- 3. The learner can design microprocessor based systems and thus can become successful entrepreneur and meet needs of Indian and multinational industries.
- 4. The students can design and develop processor which can be used in Robotics, Automobiles, Space and many research areas.
- 5. The learners will acquaint optimization skills and undergo concepts design metrics for embedded systems.
- 6. The students will get acquainted with recent trends in microprocessor like pipelining, cache memory etc.
- 7. To understand the applications of Microprocessors.
- 8. To learn interfacing of real world input and output devices.
- 9. To study various hardware and software tools for developing applications.

Course Outcomes:

1. Learner gains ability to apply knowledge of engineering in designing different case studies.

- 2. Students get ability to conduct experiments based on interfacing of devices to or interfacing to real world applications.
- 3. Students get ability to interface mechanical system to function in multidisciplinary system like in robotics, Automobiles.
- 4. Students can identify and formulate control and monitoring systems using microprocessors.
- 5. Students will design cost effective real time system to serve engineering solution for Global, social and economic context.
- 6. This course understanding will enforce students to acquire knowledge of recent trends like superscalar and pipelining and thus finds recognition of continuous updation.
- 7. Learn use of hardware and software tools.
- 8. Develop interfacing to real world devices.

UNIT - 1 07 Hours

Fundamentals of Microprocessor

Basic 8085 microprocessor architecture and its functional blocks, 8085 microprocessor IC pin outs and signals.

UNIT - 2 07 Hours

Programming with 8085

Assembly Language Programming Basics, Addressing Modes, Instruction set of microprocessor, Instruction timing diagram. Writing, Assembling & Executing Assembly Language Programs.

UNIT - 3 07 Hours

Interrupts

Interrupt structure of 8085 microprocessor, processing of vectored and non-vectored interrupts, latency time and response time; Handling multiple interrupts.

UNIT - 4 07 Hours

Interfacing

Memory Interfacing, Interfacing with 8255 Programmable Peripheral Interface, 8254 Programmable Interval Timer, 8279 Display controller, Interrupt controller 8259.

UNIT - 5 07 Hours

Introduction of 8086 Microprocessor

Detail Architecture of 8086, Addressing Modes, Assembler directives, Co-Processor

TEXT/REFERENCE BOOKS

- 1. Microprocessor and interfacing 8085, Douglas V Hall, Tata Mc Gram Hill.
- 2. Microprocessor-Architecture, programming and application with 8085, gaonkar, penram international.
- 3. Short K. L., "Microprocessors and Programmed Logic", 2nd Ed., Pearson Education, 2008..
- 4. D V kodavade, S. Narvadkar, 8085-86 microprocessors Architecture progg and interfaces, wiley.
- 5. Rout 8085 microcontroller-architecture, programming and application, 2nd edi, penram international.

BTEXC404 Signals and Systems 3 Credits

Course Objectives:

- 1. To understand the mathematical description of continuous and discrete time signals and systems.
- 2. To classify signals into different categories.
- 3. To analyze Linear Time Invariant (LTI) systems in time and transform domains.
- 4. To build basics for understanding of courses such as signal processing, control system and communication.
- 5. To develop basis of probability and random variables.

Course Outcomes:

On completion of the course, students will be able to:

- 1. Understand mathematical description and representation of continuous and discrete time signals and systems.
- 2. Develop input output relationship for linear shift invariant system and understand the convolution operator for continuous and discrete time system.

- 3. Understand and resolve the signals in frequency domain using Fourier series and Fourier transforms.
- 4. Understand the limitations of Fourier transform and need for Laplace transform and develop the ability to analyze the system in s- domain.
- 5. Understand the basic concept of probability, random variables & random signals and develop the ability to find correlation, CDF, PDF and probability of a given event.

UNIT - 1 06 Hours

Introduction to Signals and Systems

Introduction and Classification of signals: Definition of signal and systems, Continuous time and discrete time signal, Classification of signals as even, odd, periodic and non-periodic, deterministic and non-deterministic, energy and power, elementary signals used for testing: exponential, sine, impulse, step and its properties, ramp, rectangular, triangular, signum, sinc Operations on signals: Amplitude scaling, addition, multiplication, differentiation, integration (Accumulator for DT), time scaling, time shifting and time folding, Sampling Theorem and reconstruction of sampled signal, Concept of aliasing, examples on under sampled and over sampled signals.

Systems: Definition, Classification: linear and non-linear, time variant and invariant, causal and non-causal, static and dynamic, stable and unstable, invertible.

UNIT - 2 06 Hours

Time domain representation of LTI System

System modeling: Input-output relation, definition of impulse response, convolution sum, convolution integral, computation of convolution integral using graphical method, Computation of convolution sum. Properties of convolution, properties of the system based on impulse response, step response in terms of impulse response.

UNIT - 3 06 Hours

Fourier Series

Fourier series (FS) representation of periodic Continuous Time (CT) signals, Dirichlet condition for existence of Fourier series, FS representation of CT signals using exponential Fourier series, Fourier spectrum representation, properties of Fourier series, Gibbs phenomenon, Discrete Time Fourier Series and its properties.

UNIT - 4 06 Hours

Fourier transform

Fourier Transform (FT) representation of aperiodic CT signals, Dirichlet condition for existence of Fourier transform, evaluation of magnitude and phase response, FT of standard CT signals, FT of standard periodic CT signals, Introduction to Fourier Transform of DT signals, Properties of CTFT and DTFT, Fourier Transform of periodic signals. Concept of sampling and reconstruction in frequency domain, sampling of bandpass signals.

UNIT - 5 06 Hours

Laplace and Z-transform

Definition of Laplace Transform (LT), Limitations of Fourier transform and need of Laplace transform, ROC and its properties, properties of Laplace transform, Laplace transform evaluation using properties, Inverse Laplace transform based on partial fraction expansion, Application of Laplace transforms to the LTI system analysis.

Introduction to Z-transform, and its properties, Inverse Z-transform, different methods of inverse Z-transform, Z-transform for discrete time system LTI analysis.

UNIT - 6 06 Hours

Probability and Random Signals

Probability: Experiment, sample space, event, probability, conditional probability and statistical independence, Bayes theorem, Random variables: Continuous and Discrete random variables, cumulative distributive function, Probability density function, properties of CDF and PDF. Definitions: Statistical averages, mean, moments and expectations, standard deviation and variance, Introduction to Correlation: Autocorrelation, Cross correlation, and their properties.

TEXT/REFERENCE BOOKS

- 1. Alan V. Oppenheim. Alan S. Willsky and S. Hamid Nawab, "Signals and Systems", PHI
- 2. Dr. S. L. Nalbalwar, A.M. Kulkarni and S.P. Sheth, "Signals and Systems", 2nd Edition, Synergy Knowledgeware, 2017
- 3. Simon Haykins and Barry Van Veen, "Signals and Systems", 2nd Edition, Wiley India.
- 4. Shaila Apte, "Signals and Systems-principles and applications", Cambridge University press, 2016.

- 5. Mrinal Mandal and Amir Asif, Continuous and Discrete Time Signals and Systems, Cambridge University Press, 2007.
- 6. Peyton Peebles, "Probability, Random Variable, Random Processes", 4th Edition, Tata McGraw Hill.
- 7. A. Nagoor Kanni "Signals and Systems", 2nd edition, McGraw Hill.
- 8. NPTEL video lectures on Signals and Systems.

BTID405	Product Design Engineering	2 Credits
B11D4 03	1 Todact Design Engineering	2 Cicuits

Teaching Scheme:	Examination Scheme:		
Lecture-cum-demonstration: 1 hr/week	Continuous Assessment	1:	30 Marks
Design Studio: 2 hr/week	Continuous Assessment	2:	30 Marks
	Final Assessment:		40 Marks

- ➤ Pre-requisites: Knowledge of Basic Sciences, Mathematics and Engineering Drawing
- ➤ Design Studio : 2 hr/week to develop design sketching and practical skills, learning digital tools
- ➤ Continuous Assessment: Progress through a product design and documentation of steps in the selected product design
- Final Assessment: Product Design in Studio with final product specifications

Course Outcomes: At the end of the course, students will be able to

- 1. Create simple mechanical or other designs
- 2. Create design documents for knowledge sharing
- 3. Manage own work to meet design requirements
- 4. Work effectively with colleagues.

UNIT - 1 04 Hours

Introduction to Engineering Product Design:

Trigger for Product/ Process/ System, Problem solving approach for Product Design, Disassembling existing Product(s) and understanding relationship of components with each other, Sketching of components, identifying materials and their processing for final product, fitting of components, understanding manufacturing as scale of the components, Reverse engineering concept, case studies of products in markets, (or in each discipline), underlying principles, Case studies of product failures, revival of failed products, Public/Society's perception of products, and its input into product design.

UNIT - 2 04 Hours

Ideation:

Generation of ideas, Funnelling of ideas, Short-listing of ideas for product(s) as an individual or group of individuals, Sketching of products, Market research for need, competitions, scale and cost, Initial specifications of products.

UNIT - 3 04 Hours

Conceptualisation:

Computer operation principles and image editing through a graphical Composition; Computer aided 2D drafting and 3D Modeling through simple exercises.

Designing of components, Drawings of parts and synthesis of a product from its component parts, Rendering the designs for 3-D visualization and to create a photo realistic image, Parametric modelling of product, 3-D Visualization of mechanical products, Detail Engineering drawings of components.

UNIT - 4 04 Hours

Detailing:

Managing assembling, Product specifications- data Sheet, Simple mechanical designs, Workshop safety and health issues, Create documents for knowledge sharing.

Hands-on Activity Charts for Use of Digital Tools

Activity 1	Learn the basic vector sketching tools.	2
Activity 2	General understanding of shading for adding depth to objects. Understanding of editing vectors	2
Activity 3	Begin developing a thought process for using digital sketching.	3
Activity 4	Create a basic shape objects sphere, box cylinders	3
		L
Activity 5	Create Automotive wheel concepts	3
Activity 6	Understanding Navigation and Data Panel Interface	2
Activity 7	Solid and Surface modelling, Rendering 3-D models	4
Activity 8	Product market and Product Specification Sheet	3
Activity 9	Documentation for the product	2

TEXT/REFERENCE BOOKS

- Model Curriculum for "Product Design Engineer Mechanical", NASSCOM (Ref. ID: SSC/Q4201, Version 1.0, NSQF Level: 7)
- 2. Eppinger, S., & Ulrich, K.(2015). Product design and development. McGraw Hill Higher Education.
- 3. Green, W., & Jordan, P. W. (Eds.). (1999). Human factors in product design: current practice and future trends. CRC Press.
- 4. Sanders, M. S., & McCormick, E. J. (1993). Human factors in engineering and design McGRAW- HILL book company.

- 5. Roozenburg, N. F., &Eekels, J. (1995). Product design: fundamentals and methods (Vol. 2). John Wiley & Sons Inc.
- 6. Lidwell, W., Holden, K., & Butler, J.(2010). Universal principles of designs, revised and updated: 125 ways to enhance usability, influence perception, increase appeal, make better design decisions, and teach through design. Rockport Pub.

BTBSC406

Numerical Methods and Computer Programming

3 Credits

Course Objectives:

- 1. To prepare students for successful career in industries, for Post Graduate programmes and to work in research institutes.
- 2. To understand different numerical techniques used for solving algebraic and transcendental equations.
- 3. To understand numerical methods to solve a system of linear equations.
- 4. To understand numerical integration and differentiation techniques.
- 5. To understand various difference operators and interpolation techniques.
- 6. To understand object-oriented programming fundamentals and features.
- 7. To mold students professionally by course contents and sufficient problem solving and programming exercises and to acquaint them with different types of numerical techniques and programming concepts.

Course Outcomes:

On completion of the course, students will be able to:

- 1. Able to solve algebraic and transcendental equations by using numerical techniques and will be able to compare different numerical techniques used for this purpose and also will be able to choose a proper one as per the requirement of the problem.
- 2. Able to solve a system of linear equations with any number of variables using different direct and iterative numerical techniques.
- 3. Understand the concept of interpolation, finite difference operators and their relations, and can apply different interpolation techniques on equi-spaced or non equi-spaced data values.
- 4. Prepare them to write computer programs for the numerical computational techniques.

- 5. Understand application of the NMCP course in many engineering core subjects like signal processing, digital communication, numerical techniques in electromagnetics etc.
- 6. Understand procedure-oriented and object oriented programming concepts.
- 7. Capable of writing C and C++ programs efficiently.

UNIT - 1 06 Hours

Introduction to Computational Methods and Errors

Computational Methods: General principles of computational techniques, Introduction, common ideas and concepts of computational methods, various computational techniques. Errors: Types and sources of errors, Concept in error estimation, Error propagation, Error due to floating point, Representation of errors, Elementary uses of series in calculation of errors.

UNIT - 2 06 Hours

Solution of Transcendental / Polynomial Equations and System of Linear Equation

Solution of Transcendental / Polynomial Equations: Finding root of polynomial equations deploying computational methods such as Bisection, Regula-falsi, Newton-Raphson, Seccant, Successive approximation. System of linear equation: Solving linear equations deploying computational methods such as Gauss elimination, Gauss Jordan, Partial pivoting, Matrix triangularisation (LU decomposition), Cholesky, Gauss Seidel and Jacobi methods.

UNIT - 3 06 Hours

Interpolation and Polynomial Approximation

Least square approximation, Orthogonal polynomials Chebyshev polynomials, Finite difference operator and their relations, Forward, backward, central and divided difference, Newton's forward divided difference, Backward difference interpolation, Sterling interpolation, Lagrange's interpolation polynomials, Spline interpolation, Least square approximation.

UNIT - 4 06 Hours

Numerical Integration and Differentiation

Numerical Integration: Methods based on interpolation such as Trapezoidal rule, Simsons 1/3 and 3/8 rules. Numerical differentiation: Euler's method, Modified Euler's method, Taylor's series, Runge Kutta 2nd and 4th order, Stability analysis of above methods.

UNIT - 5 06 Hours

Object Oriented Programming

Software Evaluation, Object oriented programming paradigm, Basic concepts of object oriented programming, Benefits of OOP, Object oriented languages, Applications of OOP Beginning with C++: Structure of C++ program, Creating the source file, Compiling & linking, Basic data types, User defined data types, Symbolic constants, Declaration of variables, Dynamic initialization of variables, Reference variables, Operators in C++, Scope resolution operator, Type cast operator. Functions in C++: Function prototyping, Inline functions, Function overloading, Friend and virtual functions. Classes and Objects: Specifying a class, Defining member functions, C++ program with class, Arrays within a class, Memory allocation for objects, Constructors, Multiple constructor in class, Dynamic initialization of objects, Dynamic constructor, Destructors.

UNIT - 6 06 Hours

Operator Overloading and Type Conversions

Defining operator overloading, Overloading unary operators, Overloading binary operators, Manipulation of strings operators, Rules for overloading operators. Inheritance: Extending Classes: Defining derived classes, Single inheritance, multilevel inheritance, multiple inheritance, Hierarchical inheritance, Hybrid inheritance, Virtual base classes, Abstract classes, Member classes: Nesting of classes Pointers Virtual Functions and Polymorphism: Pointers to objects, Pointers to derived classes, Virtual functions, pure virtual functions Managing Console I/O Operations C++ Streams, C++ Stream Classes, Unformatted I/O Operations, Managing output with manipulators.

TEXT/REFERENCE BOOKS

- 1. S. S. Sastry, "Introductory Methods of Numerical Analysis", PHI, 1990, 3rd edition.
- 2. V. Rajaraman, "Computer Oriented Numerical Methods, PHI, New Delhi", 2000, 3rd Edition.
- 3. E. V. Krishnamurthy, and Sen S. K., "Numerical Algorithm: Computations in Science and Engg", Affiliated East West, New Delhi, 1996.
- 4. D. Ravichandran, "Programming with C++", TMH
- 5. E. Balagurusamy, "Object-Oriented Programming with C++", TMH, New Delhi, 2001,2ndEdition

- 6. Yeshwant Kanetkar, "Let us C++, BPB Pub.", Delhi, 2002, 4thEdition.
- 7. Stroupstrup Bjarne, "C++ Programming Language", Addison Wesley, 1997, 3rd Edition.
- 8. Horton, "Beginning C++: The Complete Language", Shroff Pub., Navi Mumbai, 1998.

BTEXC501

Electromagnetic Field Theory

3 Credits

Course Objectives:

- 1. Learners can be able to explore their knowledge in the area of EM Waves and its analysis.
- 2. To learn basic coordinate system, significance of divergence, gradient, curl and its applications to EM Waves.
- 3. To understand the boundary conditions for different materials /surfaces.
- 4. To get insight on finding solution for non-regular geometrical bodies using Finite Element Method, Method of Moments, Finite Difference Time Domain.
- 5. To get the basics of microwave, transmission lines and antenna parameters.
- 6. Students get acquainted with different physical laws and theorems and provide basic platform for upcoming communication technologies.

Course Outcomes:

At the end of this course students will demonstrate the ability to

- 1. Understand characteristics and wave propagation on high frequency transmission lines
- 2. Carryout impedance transformation on TL
- 3. Use sections of transmission line sections for realizing circuit elements
- 4. Characterize uniform plane wave
- 5. Calculate reflection and transmission of waves at media interface
- 6. Analyze wave propagation on metallic waveguides in modal form
- 7. Understand principle of radiation and radiation characteristics of an antenna.

UNIT - 1

Maxwell's Equations

Basics of Vectors, Vector calculus, Basic laws of Electromagnetics, Maxwell's Equations, Boundary conditions at Media Interface.

UNIT - 2

Uniform Plane Wave

Uniform plane wave, Propagation of wave, Wave polarization, Poincare's Sphere, Wave propagation in conducting medium, phase and group velocity, Power flow and Poynting vector, Surface current and power loss in a conductor

UNIT - 3

Transmission Lines

Equations of Voltage and Current on TX line, Propagation constant and characteristic impedance, and reflection coefficient and VSWR, Impedance Transformation on Loss-less and Low loss Transmission line, Power transfer on TX line, Smith Chart, Admittance Smith Chart, Applications of transmission lines: Impedance Matching, use transmission line sections as circuit elements.

UNIT - 4

Plane Waves at a Media Interface

Plane wave in arbitrary direction, Reflection and refraction at dielectric interface, Total internal reflection, wave polarization at media interface, Reflection from a conducting boundary.

UNIT - 5

Wave propagation

Wave propagation in parallel plane waveguide, Analysis of waveguide general approach, Rectangular waveguide, Modal propagation in rectangular waveguide, Surface currents on the waveguide walls, Field visualization, Attenuation in waveguide

UNIT - 6

Radiation

Solution for potential function, Radiation from the Hertz dipole, Power radiated by hertz dipole, Radiation Parameters of antenna, receiving antenna, Monopole and Dipole antenna

TEXT/REFERENCE BOOKS

1. R.K. Shevgaonkar, Electromagnetic Waves, Tata McGraw Hill India, 2005

- 2. E.C. Jordan & K.G. Balmain, Electromagnetic waves & Radiating Systems, Prentice Hall, India
- 3. Narayana Rao, N: Engineering Electromagnetics, 3rd ed., Prentice Hall, 1997.
- 4. David Cheng, "Electromagnetics", Prentice Hall.
- 5. Sadiku, "Elements of Electromagnetics", Oxford.
- 6. Krauss, "Electromagnetics", McGraw Hill, New York, 4th edition.
- 7. W. H. Hayt, "Engineering Electromagnetics", McGraw Hill, New Delhi, 1999.
- 8. Edminister, Schaum series, "Electromagnetics", McGraw Hill, New York, 1993, 2nd edition.
- 9. Sarvate, "Electromagnetism", Wiley Eastern.

BTEXC502

Control Systems Engineering

3 Credits

Course Objectives:

- To introduce the elements of control system and their modeling using various Techniques.
- To introduce methods for analyzing the time response, the frequency response and the stability of systems.
- To introduce the concept of root locus, Bode plots, Nyquist plots.
- To introduce the state variable analysis method.
- To introduce concepts of PID controllers and digital and control systems.
- To introduce concepts programmable logic controller.

Course Outcomes:

At the end of this course, students will demonstrate the ability to

- 1. Understand the modeling of linear-time-invariant systems using transfer function and state-space representations.
- 2. Understand the concept of stability and its assessment for linear-time invariant systems.
- 3. Design simple feedback controllers.

UNIT - 1

Introduction to control problem

Industrial Control examples, Mathematical models of physical systems, Control hardware and their models, Transfer function models of linear time-invariant systems.

Feedback Control: Open-Loop and Closed-loop systems. Benefits of Feedback, Block diagram reduction techniques, Signal flow graph analysis.

UNIT - 2

Time Response Analysis

Standard test signals, Time response of first and second order systems for standard test inputs. Application of initial and final value theorem, Design specifications for second-order systems based on the time-response

UNIT - 3

Stability Analysis

Concept of Stability, Routh-Hurwitz Criteria, Relative Stability analysis, Root-Locus technique. Construction of Root-loci, Dominant Poles, Application of Root Locus Diagram,

UNIT - 4

Frequency-response analysis

Relationship between time and frequency response, Polar plots, Bode plots. Nyquist stability criterion, Relative stability using Nyquist criterion – gain and phase margin. Closed-loop frequency response.

UNIT - 5

Introduction to Controller Design

Stability, steady-state accuracy, transient accuracy, disturbance rejection, insensitivity and robustness of control systems, Application of Proportional, Integral and Derivative Controllers, Designing of Lag and Lead Compensator using Root Locus and Bode Plot.

UNIT - 6

State variable Analysis

Concepts of state variables, State space model. Diagonalization of State Matrix, Solution of state equations, Eigenvalues and Stability Analysis, Concept of controllability and observability, Pole-placement by state feedback, Discrete-time systems, Difference Equations, State-space models of linear discrete-time systems. Stability of linear discrete-time systems.

TEXT/REFERENCE BOOKS

- **1.** N. J. Nagrath and M.Gopal, "Control System Engineering", New Age International Publishers, 5th Edition, 2009.
- 2. Benjamin C. Kuo, "Automatic control systems", Prentice Hall of India, 7th Edition, 1995.
- **3.** M. Gopal, "Control System Principles and Design", Tata McGraw Hill, 4th Edition, 2012.
- 4. Schaum's Outline Series, "Feedback and Control Systems" Tata McGraw-Hill, 2007.
- **5.** John J. D'Azzo& Constantine H. Houpis, "Linear Control System Analysis and Design", Tata McGraw-Hill, Inc., 1995.
- **6.** Richard C. Dorf and Robert H. Bishop, "Modern Control Systems", Addison Wesley, 1999.

BTEXC503 Microelectronics 3 Credits

Course Objectives: As part of this course, students:

- Will understand the physical, electrical, and optical properties of semiconductor materials and their use in microelectronic.
- Relate the atomic and physical properties of semiconductor materials to device and circuit performance issues.
- Develop an understanding of the connection between device-level and circuit-level performance of microelectronic systems.

Course Outcomes: After successfully completing the course students will be able to upon successful completion of this course, students should be able to:

- 1. Compute carrier concentrations for semiconductor materials under a variety of doping conditions.
- 2. Compute conductivity and resistivity of semiconductor materials under a variety of condition.
- 3. Silicon wafer processing and formation of P N junction using diffusion and Ion Implantation technique
- 4. Wet and Dry oxidation process required for photolithography process.
- 5. Manufacturing process for P N junction, BJT, MOS, and IC fabrication.

UNIT - 1

MOSFETS:

Device Structure and Physical Operation, V-I Characteristics, MOSFET Circuits at DC, Biasing in MOS amplifier Circuits, Small Signal Operation and Models, MOSFET as an amplifier and as a switch, biasing in MOS amplifier circuits, small signal operation modes, single stage MOS amplifiers. MOSFET internal capacitances and high frequency modes, Frequency response of CS amplifiers, CMOS digital logic inverter, and detection type MOSFET.

UNIT - 2

Single Stage IC Amplifier:

IC Design philosophy, Comparison of MOSFET and BJT, Current sources, Current mirrors and Current steering circuits, high frequency response.

UNIT - 3

Single Stage IC amplifiers:

CS and CF amplifiers with loads, high frequency response of CS and CF amplifiers, CG and CB amplifiers with active loads, high frequency response of CG and CB amplifiers, Cascade amplifiers. CS and CE amplifiers with source (emitter) degeneration source and emitter followers, some useful transfer parings, current mirrors with improved performance. SPICE examples.

UNIT - 4

Differences and Multistage Amplifiers:

The MOS differential pair, small signal operation of MOS differential pair, the BJT differences pair, other non-ideal characteristics and differential pair, Differential amplifier with active loads, frequency response and differential amplifiers. Multistage amplifier. SPICE examples.

UNIT - 5

Feedback

General Feedback structure, Properties of negative feedback. Four basic feedback topologies. Series-Shunt feedback. Determining the loop gain. Stability problem. Effect of feedback on amplifier poles. Stability study using Bode plots. Frequency compensation. SPICE examples.

UNIT - 6

Digital CMOS circuits

Overview, Design and performance analysis of CMOS inverter, Logic Gate Circuits, Pass-transistor logic, Dynamic Logic Circuits, SPICE examples

TEXT/REFERENCE BOOKS

- **1.** "Microelectronic Circuits", Adel Sedra and K.C. Smith, 5th Edition, Oxford University Press, International Version, 2009.
- **2.** "Fundamentals of Microelectronics", Behzad Razavi, John Wiley India Pvt. Ltd, 2008.
- **3.** "Microelectronics Analysis and Design", Sundaram Natarajan, Tata McGraw-Hill, 2007.

BTEXC504 Digital Signal Processing 3 Credits

Course Objectives:

- To introduce students with transforms for analysis of discrete time signals and systems.
- To understand the digital signal processing, sampling and aliasing.
- To use and understand implementation of digital filters.
- To understand concept of sampling rate conversion and DSP processor architecture.

Course Outcomes:

After successfully completing the course students will be able to:

- 1. Understand use of different transforms and analyze the discrete time signals and systems.
- 2. Realize the use of LTI filters for filtering different real world signals.
- 3. Capable of calibrating and resolving different frequencies existing in any signal.
- 4. Design and implement multistage sampling rate converter.
- 5. Design of different types of digital filters for various applications.

UNIT - 1

DSP Preliminaries

Discrete time signals: Sequences; representation of signals on orthogonal basis; Sampling and reconstruction of signals, Basic elements of DSP and its requirements, advantages of Digital over Analog signal processing.

UNIT - 2

Discrete Fourier Transform

DTFT, Definition, Frequency domain sampling, DFT, Properties of DFT, circular convolution, linear convolution, Computation of linear convolution using circular convolution, FFT, decimation in time and decimation in frequency using Radix-2 FFT algorithm

UNIT - 3

Z transform

Need for transform, relation between Laplace transform and Z transform, between Fourier transform and Z transform, Properties of ROC and properties of Z transform, Relation between pole locations and time domain behavior, causality and stability considerations for LTI systems, Inverse Z transform, Power series method, partial fraction expansion method, Solution of difference equations.

UNIT - 4

IIR Filter Design

Concept of analog filter design (required for digital filter design), Design of IIR filters from analog filters, IIR filter design by impulse invariance method, Bilinear transformation method. Characteristics of Butterworth filters, Chebyshev filters, Butterworth filter design, IIR filter realization using direct form, cascade form and parallel form, Lowpass, High pass, Bandpass and Bandstop filters design using spectral transformation (Design of all filters using Lowpass filter)

UNIT - 5

FIR Filter Design

Ideal filter requirements, Gibbs phenomenon, windowing techniques, characteristics and comparison of different window functions, Design of linear phase FIR filter using windows

and frequency sampling method. FIR filters realization using direct form, cascade form and lattice form.

UNIT - 6

Introduction to Multirate signal processing

Concept of Multirate DSP, Introduction to Up sampler, Down sampler and two channel filter bank, Application of Multirate signal processing in communication, Music processing, Image processing and Radar signal processing.

TEXT/REFERENCE BOOKS

- 1. S.K.Mitra, Digital Signal Processing: A computer based approach.TMH
- 2. A.V. Oppenheim and Schafer, Discrete Time Signal Processing, Prentice Hall, 1989.
- 3. John G. Proakis and D.G. Manolakis, Digital Signal Processing: Principles, Algorithms and Applications, Prentice Hall, 1997.
- 4. S. L. Nalbalwar, Digital Signal Processing, Synergy Knowledgeware Publication, Mumbai, 2018
- 5. L.R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing, Prentice Hall, 1992.
- 6. J.R. Johnson, Introduction to Digital Signal Processing, Prentice Hall, 1992.
- 7. D.J.DeFatta, J. G. Lucas and W.S.Hodgkiss, Digital Signal Processing, John Wiley& Sons, 1988.

BTEXC505 Microcontroller & its Applications 3 Credits

Course Objectives:

- Objective of this course is to introduce to the students the fundamentals of microcontroller.
- After learning Microcontroller course, students will get advantage to pursue higher studies in Embedded Systems or employment in core industries.
- The learner can design microcontroller based systems and thus can become successful entrepreneur and meet needs of Indian and multinational industries.
- The learners will acquaint optimization skills and undergo concepts design metrics for embedded systems.

- The students will get acquainted with recent trends in microcontroller like pipelining, cache memory etc.
- To understand the applications of Microcontrollers.
- To understand need of microcontrollers in embedded system.
- To understand architecture and features of typical Microcontroller.
- To learn interfacing of real world input and output devices.
- To study various hardware and software tools for developing applications.

Course Outcomes:

- 1. Learner gains ability to apply knowledge of engineering in designing different case studies.
- 2. Students get ability to conduct experiments based on interfacing of devices to or interfacing to real world applications.
- 3. Graduates will be able to design real time controllers using microcontroller based system.
- 4. Students get ability to interface mechanical system to function in multidisciplinary system like in robotics, Automobiles.
- 5. Students can identify and formulate control and monitoring systems using microcontrollers.
- 6. Students will design cost effective real time system to serve engineering solution for Global, social and economic context.
- 7. This course understanding will enforce students to acquire knowledge of recent trends like superscalar and pipelining and thus finds recognition of continuous updation.
- 8. Learners get acquainted with modern tools like Programmers, Debuggers, cross compilers and current IDE i.e. integrated development environment tools.
- 9. Learn importance of microcontroller in designing embedded application.
- 10. Learn use of hardware and software tools.
- 11. Develop interfacing to real world devices.

UNIT - 1

Fundamentals of Microcontrollers

Introduction to the general structure of 8 and 16 bit Microcontrollers Harward & Von Neumann architecture, RISC & CISC processors. Role of microcontroller in embedded system. Selection criteria of microcontroller Block diagram and explanation of 8051, Port

structure, memory organization, Interrupt structure, timers and its modes, serial communication modes. Overview of Instruction set, Sample programs (assembly): Delay using Timer and interrupt, Programming Timer 0&1, Data transmission and reception using Serial port.

UNIT - 2

Interfacing with 8051 PART I

Software and Hardware tools for development of microcontroller-based systems such as assemblers, compliers, IDE, Emulators, debuggers, programmers, development board, DSO, Logic Analyzer. Interfacing LED with and without interrupt, Keypads, Seven Segment multiplexed Display, LCD, ADC Interfacing. All Programs in assembly language and C.

UNIT - 3

Interfacing with 8051 PART II

8051 timer programming, serial port and its programming, interrupt programming, LCD and keyboard interfacing, ADC and DAC interfacing, interfacing to external memory Interfacing of DAC, Temperature sensors, Stepper motor, Motion detectors, Relay, Buzzer, Optoisolators. All programs in assembly and C.

UNIT - 4

PIC Microcontroller Architecture

PIC 10, PIC12, PIC16, PIC18 series comparison, features and selection as per application. PIC18FXX architecture, registers, memory Organization and types, stack, oscillator options, BOD, power down modes and configuration bit settings, timer and its programming. Brief summary of Peripheral support, Overview of instruction set, MPLAB IDE & C18 Compiler.

UNIT - 5

Real World Interfacing Part I

Port structure with programming, Interrupt Structure (Legacy and priority mode) of PIC18F with SFRS. Interfacing of switch, LED, LCD (4&8 bits), and Key board. Use of timers with

interrupts, CCP modes: Capture, Compare and PWM generation, DC Motor speed control with CCP: All programs in embedded C.

UNIT - 6

Real World Interfacing Part I

Basics of Serial Communication Protocol: Study of RS232, RS 485, I2C, SPI, MSSP structure (SPI &I2C), UART, Sensor interfacing using ADC, RTC (DS1306) with I2C and EEPROM with SPI. Design of PIC test Board, Home protection System: All programs in embedded C..

TEXT/REFERENCE BOOKS

- 1. Mazidi, 8051 microcontroller & embedded system 3rd Edition ,Pearson
- 2. Mazidi, PIC microcontroller & embedded system 3rd Edition ,Pearson
- 3. Crisp, introduction to microprocessor & microcontrollers, 2e Elsevier, 2007.
- 4. Calcut, 8051 microcontrollers: Applications based introduction, Elsevier.
- 5. Udyashankara V., Mallikarjunaswamy, 8051 microcontroller, TMH.
- 6. Han-way Huang, using The MCS-51 microcontroller, Oxford university press
- 7. Ayala, 8051 microcontroller, cengage (Thomson)

BTEXPE506A Probability Theory and Random Processes 3 Credits

Course Objectives:

- To develop basic of probability and random variables.
- The primary objective of this course is to provide mathematical background and sufficient
 experience so that the student can read, write, and understand sentences in the language of
 probability theory, as well as solve probabilistic problems in engineering and applied
 science.

Course Outcomes:

At the end of this course students will demonstrate the ability to

- 1. Understand representation of random signals
- 2. Investigate characteristics of random processes
- 3. Make use of theorems related to random signals

4. To understand propagation of random signals in LTI systems.

UNIT - 1

Introduction to Probability

Definitions, scope and history; limitation of classical and relative- frequency- based definitions, Sets, fields, sample space and events; axiomatic definition of probability, Combinatorics: Probability on finite sample spaces, Joint and conditional probabilities, independence, total probability; Bayes' rule and applications.

UNIT - 2

Random variables

Definition of random variables, continuous and discrete random variables, cumulative distribution function (cdf) for discrete and continuous random variables; probability mass function (pmf);probability density functions (pdf) and properties, Jointly distributed random variables, conditional and joint density and distribution functions, independence; Bayes' rule for continuous and mixed random variables, Function of random a variable, pdf of the function of a random variable; Function of two random variables; Sum of two independent random variables, mean, variance and moments of a random variable, Joint moments, conditional expectation; covariance and correlation, independent, uncorrelated and orthogonal random variables.

UNIT - 3

Random vector and distributions

Mean vector, covariance matrix and properties, Some special distributions: Uniform, Gaussian and Rayleigh distributions; Binomial, and Poisson distributions; Multivariate Gaussian distribution, Vector- space representation of random variables, linear independence, inner product, Schwarz Inequality, Elements of estimation theory: linear minimum mean - square error and orthogonality principle in estimation; Moment - generating and characteristic functions and their applications, Bounds and approximations: Chebysev inequality and Chernoff Bound.

UNIT - 4

Sequence of random variables and convergence

Almost sure convergence and strong law of large numbers; convergence in mean square sense with examples from parameter estimation; convergence in probability with examples; convergence in distribution, Central limit theorem and its significance.

UNIT - 5

Random process

Random process: realizations, sample paths, discrete and continuous time processes, examples, Probabilistic structure of a random process; mean, autocorrelation and auto - covariance functions, Stationarity: strict - sense stationary (SSS) and wide- sense stationary (WSS) processes, Autocorrelation function of a real WSS process and its properties, cross- correlation function, Ergodicity and its importance.

UNIT - 6

Spectral representation of a real WSS process

Power spectral density, properties of power spectral density, cross- power spectral density and properties; auto- correlation function and power spectral density of a WSS random sequence, Line ar time - invariant system with a WSS process as an input: sationarity of the output, auto -correlation and power - spectral density of the output; examples with white - noise as input; linear shift - invariant discrete- time system with a WSS sequence as input, Spe ctral factorization theorem, Examples of random processes: white noise process and white noise sequence; Gaussian process; Poisson process, Markov Process.

TEXT/REFERENCE BOOKS

- 1. T. Veerrajan, "Probability, Statistics and Random Processes", Third Edition, McGraw Hill.
- 2. Probability and Random Processes by Geoffrey Grimmett, David Stirzaker
- 3. Probability, random processes, and estimation theory for engineers by Henry Stark, John William Woods.

- 4. H. Stark and J. Woods, "Probability and Random Processes with Applications to Signal Processing," Third Edition, Pearson Education
- 5. A. Papoulis and S. Unnikrishnan Pillai, "Probability, Random Variables and Stochastic Processes," Fourth Edition, McGraw Hill.
- 6. K. L. Chung, Introduction to Probability Theory with Stochastic Processes, Springer International
- 7. P. G. Hoel, S. C. Port and C. J. Stone, Introduction to Probability, UBS Publishers.
- 8. P. G. Hoel, S. C. Port and C. J. Stone, Introduction to Stochastic Processes, UBS Publishers
- 9. S. Ross, Introduction to Stochastic Models, Harcourt Asia, Academic Press.

BTEXPE506C

Data Structure & Algorithms using Java Programming

3 Credits

Prerequisites: Basic knowledge of C language is required.

Course Objectives:

- To assess how the choice of data structures and algorithm design methods impacts the performance of programs.
- To choose the appropriate data structure and algorithm design method for a specified application.
- To study the systematic way of solving problems, various methods of organizing large amounts of data.
- To solve problems using data structures such as linear lists, stacks, queues, binary trees,
 binary search trees, and graphs and writing programs for these solutions.
- To employ the different data structures to find the solutions for specific problems

Course Outcomes:

On completion of the course, student will be able to:

- 1. To impart the basic concepts of data structures and algorithms.
- 2. To understand concepts about searching and sorting techniques
- 3. Describe how arrays, records, linked structures are represented in memory and use them in algorithms.
- 4. To understand basic concepts about stacks, queues, lists trees and graphs.
- 5. To enable them to write algorithms for solving problems with the help of fundamental data structures.

UNIT - 1

Introduction

Basic Terminologies: Elementary Data Organizations, Data Structure Operations: insertion, deletion, traversal etc.; Analysis of an Algorithm, Asymptotic Notations, Time-Space trade off. Searching: Linear Search and Binary Search Techniques and their complexity analysis.

UNIT - 2

Stacks and Queues

ADT Stack and its operations: Algorithms and their complexity analysis, Applications of Stacks: Expression Conversion and evaluation – corresponding algorithms and complexity analysis. ADT queue, Types of Queue: Simple Queue, Circular Queue, Priority Queue; Operations on each type of Queues: Algorithms and their analysis.

UNIT - 3

Linked Lists

Singly linked lists: Representation in memory, Algorithms of several operations: Traversing, Searching, Insertion into, Deletion from linked list; Linked representation of Stack and Queue, Header nodes, doubly linked list: operations on it and algorithmic analysis; Circular Linked Lists: all operations their algorithms and the complexity analysis.

UNIT - 4

Trees

Basic Tree Terminologies, Different types of Trees: Binary Tree, Threaded Binary Tree, Binary Search Tree, AVL Tree; Tree operations on each of the trees and their algorithms with complexity analysis. Applications of Binary Trees, B Tree, B+ Tree: definitions, algorithms and analysis.

UNIT - 5

Sorting and Hashing

Objective and properties of different sorting algorithms: Selection Sort, Bubble Sort, Insertion Sort, Quick Sort, Merge Sort, Heap Sort; Performance and Comparison among all the methods, Hashing.

UNIT - 6

Graph

Basic Terminologies and Representations, Graph search and traversal algorithms and complexity analysis.

TEXT/REFERENCE BOOKS

- 1. "How to Solve it by Computer", 2nd Impression by R. G. Dromey, Pearson Education.
- 2. Ellis Horowitz, Sartaj Sahni, "Fundamentals of Data Structures", Galgotia Books Source. ISBN 10: 0716782928
- 3. Java: The Complete Reference, Seventh Edition, Herbert Schildt, McGraw Hill
- 4. Richard F. Gilberg & Behrouz A. Forouzan, Data Structures: A Pseudocode Approach with C, Cengage Learning, second edition. ISBN-10: 0534390803.
- 5. Seymour Lipschutz, Data Structure with C, Schaum's Outlines, Tata Mc Graw Hill. ISBN-10: 1259029964.

BTEXPE506D Introduction to MEMS 3 Credits

Course Objectives:

- The objective of this course is to make students to gain basic knowledge on overview of MEMS (Micro electro Mechanical System) and various fabrication techniques.
- This enables them to design, analysis, fabrication and testing the MEMS based components and to introduce the students various opportunities in the emerging field of MEMS.
- This will enables student to study applications of micro-sensors and micro-actuators, various MEMS fabrication technologies, MEMS-specific design issues and constraints, Dynamics and modeling of microsystems, getting access to fabrication and testing in academia and industry.

Course Outcomes:

At the end of the course the students will be able to

- 1. Appreciate the underlying working principles of MEMS and NEMS devices.
- 2. Design and model MEM devices.

UNIT - 1

Introduction to MEMS

Introduction, History, Concepts of MEMS: Principles, application and design, Scaling Properties/Issues, Micromachining Processes: Substrates, lithography, wet/dry etching processes, deposition processes, film stress, exotic processes. Mechanical Transducers: transduction methods, accelerometers, gyroscopes, pressure sensors, MEMS microphones, mechanical structures, actuators.

UNIT - 2

Control and Materials of MEMS

Controls of MEMS: Analog control of MEMS, Sliding mode control of MEMS, Digital control of MEMS, Materials for MEMS: Substrate and wafers, Active substrate material, silicon, Silicon compound, Silicon pezoresisters, Gallium arsenide, Quartz, piezoelectric crystals, Polymers.

UNIT - 3

Review of Basic MEMS fabrication modules:

MEMS fabrication modules, Oxidation, Deposition Techniques, Lithography (LIGA), and Etching.

UNIT - 4

Micromachining

Micromachining, Surface Micromachining, sacrificial layer processes, Stiction; Bulk Micromachining, Isotropic Etching and Anisotropic Etching, Wafer Bonding

UNIT - 5

Mechanics of solids in MEMS/NEMS

Mechanics of solids in MEMS/NEMS: Stresses, Strain, Hookes's law, Poisson effect, Linear Thermal Expansion, Bending, Energy methods.

UNIT - 6

Finite Element Method and Electromechanical Systems

Overview of Finite Element Method, Modeling of Coupled Electromechanical Systems

TEXT/REFERENCE BOOKS

- 1. G. K. Ananthasuresh, K. J. Vinoy, S. Gopalkrishnan K. N. Bhat, V. K. Aatre, Micro and Smart Systems, Wiley India, 2012
- S. E.Lyshevski, Nano-and Micro-Electromechanical systems: Fundamentals of Nano-and Microengineering (Vol. 8). CRC press, (2005).
- 3. S. D. Senturia, Microsystem Design, Kluwer Academic Publishers, 2001.
- 4. M. Madou, Fundamentals of Microfabrication, CRC Press, 1997.
- 5. G. Kovacs, Micromachined Transducers Sourcebook, McGraw-Hill, Boston, 1998.
- 6. M.H. Bao, Micromechanical Transducers: Pressure sensors, accelerometers, and Gyroscopes, Elsevier, New York, 2000.

BTEXPE506E Audio & Video Processing 3 Credits

Course Objectives:

 The objective is to provide students with a strong understanding of the fundamental principles and practical applications of audio and video engineering with latest updates.

Course Outcomes:

After successfully completing the course students will be able to

- 1. Understand the concept of basic television signal processing.
- 2. Identify globally accepted color TV standards.
- 3. Demonstrate the need of audio and video compression techniques in real life.
- 4. Acquire knowledge of latest digital TV systems and applications.
- 5. Describe the attributes of acoustics, sound engineering and storage media.

UNIT - 1

Fundamentals of Color Television

Aspect, scanning, perception of brightness and colour, colour mixing, composite video signal, synchronisation details, digital TV camera, modulation of audio and video, terrestrial signal transmission, video displays: LCD vs LED.

UNIT - 2

Colour Standards and digital video

Standards: NTSC, PAL, SECAM colour system, generalized colour TV receiver block diagram, study of functionality of each block, alignment issues, sampling of video signal, colour sub sampling, composite vs component video, interlace vs progressive scan.

UNIT - 3

Digital TV

Digital video, resolution, notation, digital video formats, digital video quality measure, video restoration, video streaming, DTH, Video compression: MPEG 2, MPEG 4, comparison of SDTV, EDTV and HDTV.

UNIT - 4

Advanced TV Systems and Techniques

Introduction to UHDTV: 4K and 8K, IPTV/web TV, smart TV, Wi-Fi TV, digital surveillance, 3D TV concept, over view of H.264 features, camcorders, webcams, perspective of TV White spaces.

UNIT - 5

Acoustics

Hearing frequency Human and sound, range, dynamic masking, range, digital representation intensity, decibel sound level. of sound wave, sound in rooms, reverberation, room/studio acoustics as a component in speech waves system, PA systems, special types of microphones and speakers.

UNIT - 6

Audio and Video Recording Systems

Digital sound, sound recording, CD/ DVD player, MP3 player, Blue Ray DVD Player, ITU-T(G) compression standards, multichannel/Dolby 5.1sound in DTV.

TEXT/REFERENCE BOOKS

- 1. A. M. Dhake, Television and video Engineering, TMH Publication, 2ndEdition, 2001.
- 2. Kelth jack, Video Demystified: A Handbook for the Digital Engineer, 5thEdition, Newnes, 2007.
- 3. R.G. Gupta, Audio and Video Systems, McGraw Hill 1 Education (India), 2nd Edition, 2010.
- 4. S. P. Bali, Color Television Theory and Practice, McGraw Hill Education (India), 1994.
- 5. A. M. Tekalp, Digital Video, Prentice Hall, 1995.
- 6. R. P. Gulathi, Modern Television Practice, 4thedition, New Age International Publisher, 2014.

BTEXC601	Computer Architecture	3 Credits
----------	-----------------------	-----------

Course Objectives:

- To introduce basic concepts of computer organization and to illustrate the computer organization concepts by Assembly Language programming.
- To understand operating systems and how they work with the computer and students
 will understand the relationship between hardware and software specifically how
 machine organization impacts the efficiency of applications written in a high-level
 language.
- Students will be able to make use of the binary number system to translate values between the binary and decimal number systems, to perform basic arithmetic operations and to construct machine code instructions and students will be able to design and implement solutions for basic programs using assembly language.
- Students will be able to design logical expressions and corresponding integrated logic circuits for a variety of problems including the basic components of a CPU such as adders, multiplexers, the ALU, a register file, and memory cells and to explain the fetch-execute cycle performed by the CPU and how the various components of the data path are used in this process.

Course Outcomes:

At the end of this course students will demonstrate the ability to:

1. Learn how computers work

- 2. Know basic principles of computer's working
- 3. Analyze the performance of computers
- 4. Know how computers are designed and built
- 5. Understand issues affecting modern processors (caches, pipelines etc.).

UNIT - 1

Basics of Computers

Basic Structure of Computers, Functional units, software, performance issues software, machine Instructions and programs, Types of instructions, Instruction sets: Instruction formats, Assembly Language, Stacks, Queues, Subroutines.

UNIT - 2

Processor organization

Processor organization, Information representation, number formats.

UNIT - 3

ALU design

Multiplication & division, ALU design, Floating Point arithmetic, IEEE 754 floating point formats Control Design, Instruction sequencing, Interpretation, Hard wired control - Design methods, and CPU control unit.

UNIT - 4

Memory organization

Memory organization, device characteristics, RAMS, ROM, Memory management, Concept of Cache & associative memories, Virtual memory.

UNIT - 5

System organization

System organization, Input - Output systems, Interrupt, DMA, Standard I/O interfaces.

UNIT - 6

Parallel processing

Concept of parallel processing, Pipelining, Forms of parallel processing, interconnect network.

TEXT/REFERENCE BOOKS

- 1. V. Carl Hammacher, "Computer Organisation", Fifth Edition.
- 2. A. S. Tanenbum, "Structured Computer Organisation", PHI, Third edition
- 3. Y.Chu, "Computer Organization and Microprogramming", II, Englewood Chiffs, N.J., Prentice Hall Edition
- 4. M. M. Mano, "Computer System Architecture", Edition
- 5. C. W. Gear, "Computer Organization and Programming", McGraw Hill, N.V. Edition
- 6. Hayes J.P, "Computer Architecture and Organization", PHI, Second edition

BTEXC602 Power Electronics 3 Credits

Course Objectives:

- To introduce students to different power devices to study their construction, characteristics and turning on circuits.
- To give an exposure to students of working & analysis of controlled rectifiers for different loads, inverters, DC choppers, AC voltage controllers and resonant converters.
- To study the different motor drives, various power electronics applications like UPS, SMPS, etc. and some protection circuits.

Course Outcomes:

At the end of this course students will demonstrate the ability to

- 1. Build and test circuits using power devices such as SCR
- 2. Analyze and design controlled rectifier, DC to DC converters, DC to AC inverters,
- 3. Learn how to analyze these inverters and some basic applications.
- 4. Design SMPS.

UNIT - 1

Characteristics of Semiconductor Power Devices

Thyristor, power MOSFET and IGBT- Treatment should consist of structure, Characteristics, operation, ratings, protections and thermal considerations. Brief introduction to power devices viz. TRIAC, MOS controlled thyristor (MCT), Power Integrated Circuit (PIC) (Smart Power), Triggering/Driver, commutation and snubber circuits for thyristor, power MOSFETs and IGBTs (discrete and IC based). Concept of fast recovery and schottky diodes as freewheeling and feedback diode.

UNIT - 2

Controlled Rectifiers

Single phase: Study of semi and full bridge converters for R, RL, RLE and level loads. Analysis of load voltage and input current- Derivations of load form factor and ripple factor, Effect of source impedance, Input current Fourier series analysis of input current to derive input supply power factor, displacement factor and harmonic factor.

UNIT - 3

Choppers

Quadrant operations of Type A, Type B, Type C, Type D and type E choppers, Control techniques for choppers – TRC and CLC, Detailed analysis of Type A chopper. Step up chopper. Multiphase Chopper.

UNIT - 4

Single-phase inverters

Principle of operation of full bridge square wave, quasi-square wave, PWM inverters and comparison of their performance. Driver circuits for above inverters and mathematical analysis of output (Fourier series) voltage and harmonic control at output of inverter (Fourier analysis of output voltage). Filters at the output of inverters, Single phase current source inverter.

UNIT - 5

Switching Power Supplies

Analysis of fly back, forward converters for SMPS, Resonant converters - need, concept of soft switching, switching trajectory and SOAR, Load resonant converter - series loaded half bridge DC-DC converter.

UNIT - 6

Applications

Power line disturbances, EMI/EMC, power conditioners. Block diagram and configuration of UPS, salient features of UPS, selection of battery and charger ratings, sizing of UPS. Separately excited DC motor drive. P M Stepper motor Drive.

TEXT/REFERENCE BOOKS

- 1. Muhammad H. Rashid, "Power electronics" Prentice Hall of India.
- 2. Ned Mohan, Robbins, "Power electronics", edition III, John Wiley and sons.
- 3. P.C. Sen., "Modern Power Electronics", edition II, Chand& Co.
- 4. V. R. Moorthi, "Power Electronics", Oxford University Press.
- 5. Cyril W., Lander," Power Electronics", edition III, McGraw Hill.
- 6. G K Dubey, S R Doradla,: Thyristorised Power Controllers", New Age International Publishers. SCR manual from GE, USA.

BTEXPE603A Digital Communication 3 Credits

Course Objectives:

- To understand the building blocks of digital communication system.
- To prepare mathematical background for communication signal analysis.
- To understand and analyze the signal flow in a digital communication system.
- To analyze error performance of a digital communication system in presence of noise and other interferences.
- To understand concept of spread spectrum communication system.

Course Outcomes:

- 1. Analyze the performance of a baseband and pass band digital communication system in terms of error rate and spectral efficiency.
- 2. Perform the time and frequency domain analysis of the signals in a digital communication system.
- 3. Select the blocks in a design of digital communication system.
- 4. Analyze Performance of spread spectrum communication system.

UNIT - 1

Digital Transmission of Analog Signal

Introduction to Digital Communication System: Why Digital?, Block Diagram and transformations, Basic Digital Communication Nomenclature. Digital Versus Analog Performance Criteria, Sampling Process, PCM Generation and Reconstruction, Quantization Noise, Non-uniform Quantization and Companding, PCM with noise: Decoding noise, Error threshold, Delta Modulation, Adaptive Delta Modulation, Delta Sigma Modulation, Differential Pulse Code Modulation, LPC speech synthesis.

UNIT - 2

Baseband Digital Transmission

Digital Multiplexing: Multiplexers and hierarchies, Data Multiplexers. Data formats and their spectra, synchronization: Bit Synchronization, Scramblers, Frame Synchronization. Intersymbol interference, Equalization.

UNIT - 3

Random Processes

Introduction, Mathematical definition of a random process, Stationary processes, Mean, Correlation & Covariance function, Ergodic processes, Transmission of a random process through a LTI filter, Power spectral density, Gaussian process, noise, Narrow band noise, Representation of narrowband noise in terms of in phase & quadrature components.

UNIT - 4

Baseband Receivers

Detection Theory: MAP, LRT, Minimum Error Test, Error Probability, Signal space representation: Geometric representation of signal, Conversion of continuous AWGN channel to vector channel, Likelihood functions, Coherent Detection of binary signals in presence of noise, Optimum Filter, Matched Filter, Probability of Error of Matched Filter, Correlation receiver.

UNIT - 5

Passband Digital Transmission

Pass band transmission model, Signal space diagram, Generation and detection, Error Probability derivation and Power spectra of coherent BPSK, BFSK and QPSK. Geometric representation, Generation and detection of - M-ary PSK, M-ary QAM and their error probability, Generation and detection of -Minimum Shift Keying, Gaussian MSK, Non-coherent BFSK, DPSK and DE PSK, Introduction to OFDM.

UNIT - 6

Spread Spectrum Techniques

Introduction, Pseudo noise sequences, A notion of spread spectrum, Direct sequence spread spectrum with coherent BPSK, Signal space dimensionality & processing gain, Probability of error, Concept of jamming, Frequency hop spread spectrum, Wireless Telephone Systems, Personal Communication System.

TEXT/REFERENCE BOOKS

- 1. Simon Haykin, "Digital Communication Systems", John Wiley & Sons, Fourth Edition.
- 2. A.B Carlson, P B Crully, J C Rutledge, "Communication Systems", Fourth Edition, McGraw Hill Publication.
- 3. Ha Nguyen, Ed Shwedyk, "A First Course in Digital Communication", Cambridge University Press.

- 4. B P Lathi, Zhi Ding "Modern Analog and Digital Communication System", Oxford University Press, Fourth Edition.
- 5. Bernard Sklar, Prabitra Kumar Ray, "Digital Communications Fundamentals and Applications" Second Edition, Pearson Education.
- 6. Taub, Schilling, "Principles of Communication System", Fourth Edition, McGraw Hill.
- 7. P Ramkrishna Rao, Digital Communication, Mc Graw Hill Publication.

BTEXPE603B

Computer Network and Cloud Computing

3 Credits

Course Objectives:

- To develop an understanding of modern network architectures from a design and performance perspective.
- To introduce the student to the major concepts involved in wide-area networks (WANs), local area networks (LANs) and Wireless LANs (WLANs).
- To provide an opportunity to do network programming
- To provide a WLAN measurement ideas.
- Discuss, with confidence, what is cloud computing and what are key security and control
- Considerations within cloud computing environments.
- Identify various cloud services.

Course Outcomes:

- To master the terminology and concepts of the OSI reference model and the TCP-IP reference model.
- 2. To master the concepts of protocols, network interfaces, and design/performance issues in local area networks and wide area networks.
- 3. To be familiar with contemporary issues in networking technologies.
- 4. To be familiar with network tools and network programming.
- 5. For a given requirement (small scale) of wide-area networks (WANs), local area networks (LANs) and Wireless LANs (WLANs) design it based on the market available component.
- 6. For a given problem related TCP/IP protocol developed the network programming.
- 7. Configure DNS DDNS, TELNET, EMAIL, File Transfer Protocol (FTP), WWW, HTTP, SNMP, Bluetooth, Firewalls using open source available software and tools.

- 8. To impart fundamental concepts in the area of cloud computing.
- 9. To impart knowledge in applications of cloud computing.
- 10. Develop applications for cloud computing.

UNIT - 1

Physical Layer and Data Link Layer

Network types, OSI model, TCP / IP protocol suite, Addressing, Guided and Unguided Transmission media. Switching: Circuit switched networks, Packet Switching, Structure of a switch.

DLC Services, DLL protocols, HDLC, PPP, Media Access Control: Random Access, Controlled Access, Channelization. Wired LAN: Ethernet Protocol, Standard Ethernet, Fast Ethernet, Giagabit Ethernet.

UNIT - 2

Network Layer and Transport Layer

Switching, Logical addressing – IPV4, IPV6; Address mapping – ARP, RARP, BOOTP and DHCP–Delivery, Forwarding and Unicast Routing protocols.

Process to Process Communication, User Datagram Protocol (UDP), Transmission Control Protocol (TCP), SCTP Congestion Control; Quality of Service, QoS improving techniques.

UNIT - 3

Application Layer

Domain Name Space (DNS), DDNS, TELNET, EMAIL, File Transfer Protocol (FTP), WWW, HTTP, SNMP, Bluetooth, Firewalls, Basic concepts of Cryptography.

UNIT - 4

Wireless LANS & Samp; Virtual Circuit Networks

Introduction, Wireless LANS: IEEE 802.11 project, Bluetooth, Zigbee, Connecting devices and Virtual LANS: Connecting devices, Virtual LANS.

UNIT - 5

.Introduction and Cloud Computing Technology

Shift from distributed computing to cloud computing; principles and characteristics of cloud computing- IaaS, PaaS, SaaS; service oriented computing and cloud environment.

Client systems, Networks, server systems and security from services perspectives; accessing the cloud with platforms and applications; cloud storage.

UNIT - 6

Working with Cloud and Cloud Services

Infrastructure and working platform as a Service – conceptual model model and functionalities. Software as a Service –conceptual model and working. Trends inService provisioning with clouds. Using Cloud Services-Cloud collaborative applications and services.

TEXT/REFERENCE BOOKS

- 1. Data Communication and Networking, 4th Edition, Behrouz A. Forouzan, McGraw-Hill.
- 2. TCP/IP Protocol Suite, 4th Edition, Behrouz A. Forouzan, Tata McGraw-Hill.
- 3. Data and Computer Communication, 8th Edition, William Stallings, Pearson Prentice Hall India.
- 4. Computer Networks, 8th Edition, Andrew S. Tanenbaum, Pearson New International Edition.
- 5. Internetworking with TCP/IP, Volume 1, 6th Edition Douglas Comer, Prentice Hall of India.
- 6. TCP/IP Illustrated, Volume 1, W. Richard Stevens, Addison-Wesley, United States of America.
- 7. Anthony T. Velte, Toby J. Velte and Robert E, Cloud Computing A Practical Approach, TMH 2010.
- 8. Michael Miller, Cloud Computing Web based Applications, Pearson Publishing, 2011.

BTEXPE603C Nano Electronics 3 Credits

Course Objectives:

- To convey the basic concepts of Nano electronics to engineering students with no background in quantum mechanics and statistical mechanics.
- Main objective of this is to provide the basic platform and deep information of different Nano electronics devices like MOSFET, FINFET, Nano metrology tools used to design the recently developing VLSI applications.

- This subject gives idea about the role and importance of the Nano electronic devices system in engineering world to develop the research ideas in VLSI.
- Recent technology proceeds with MOSFET with 64nm technology, the need Nano electronic Devices and Material subject to achieve transistor size which is less than current technology.
- The content of this course gives platform to the Nano electronics world and innovative ideas to ensure the knowledge of real time applications which helps students to stand them in Indian and multinational industries.

Course Outcomes:

At the end of the course, students will demonstrate the ability to:

- 1. Understand various aspects of nano-technology and the processes involved in making nano components and material.
- 2. Leverage advantages of the nano-materials and appropriate use in solving practical problems.
- 3. Understand various aspects of nano-technology and the processes involved in making nano components and material.
- 4. Leverage advantages of the nano-materials and appropriate use in solving practical problems.

UNIT - 1

Overview Nano Technology

Introduction to nanotechnology, Nano devices, Nano materials, Nano characterization, Definition of Technology node, Basic CMOS Process flow, meso structures.

UNIT - 2

Basics of Quantum Mechanics

Schrodinger equation, Density of States. Particle in a box Concepts, Degeneracy. Band Theory of Solids. Kronig-Penny Model. Brillouin Zones.

UNIT - 3

MOS Scaling theory

Shrink-down approaches: Introduction, CMOS Scaling, The nanoscale MOSFET, Finfets, Vertical MOSFETs, limits to scaling, system integration limits (interconnect issues etc.)

UNIT - 4

Nano electronics Semiconductor devices

Resonant Tunneling Diode, Coulomb dots, Quantum blockade, Single electron transistors, Carbon nanotube electronics, Band structure and transport, devices, applications, 2D semiconductors and electronic devices, Graphene, atomistic simulation

UNIT - 5

Properties of Nano devices

Vertical transistors -Fin FET and Surround gate FET. Metal source/drain junctions – Properties of schottky functions on Silicon, Germanium and compound semiconductors - Work function pinning.

UNIT - 6

Characterization techniques for Nano materials

FTIR, XRD, AFM, SEM, TEM, EDAX Applications and interpretation of results, Emerging nano material, nano tubes, Nano rods and other Nano structures, LB technique, Soft lithography Microwave assisted synthesis, Self assembly.

- 1. G.W. Hanson, Fundamentals of Nanoelectronics, Pearson, 2009.
- 2. W. Ranier, Nanoelectronics and Information Technology (Advanced Electronic Material and Novel Devices), Wiley-VCH, 2003.
- 3. K.E. Drexler, Nanosystems, Wiley, 1992.
- 4. J.H. Davies, The Physics of Low-Dimensional Semiconductors, Cambridge University Press, 1998.
- 5. C.P. Poole, F. J. Owens, Introduction to Nanotechnology, Wiley, 2003.

BTEXPE603D

Web Development and Design

3 Credits

Course Objectives:

- Define the principle of Web page design
- Define the basics in web design
- Visualize the basic concept of HTML.
- Recognize the elements of HTML.
- Introduce basics concept of CSS.
- Develop the concept of web publishing

Course Outcomes:

On completion of the course, student will be able to:

- 1. Develop the skill & knowledge of Web page design
- Understand the knowhow and can function either as an entrepreneur or can take up jobs in the multimedia and Web site development studio and other information technology sectors.

UNIT - 1

Web Design Principles, Basic principles involved in developing a web site, Planning process, Five Golden rules of web designing, Designing navigation bar, Page design, Layout of pages, Design Concept.

UNIT - 2

Basics in Web Design , Brief History of Internet , What is World Wide Web , Why create a web site , Web Standards , Audience requirement.

UNIT - 3

Introduction to HTML, HTML Documents, Basic structure of an HTML document, Creating an HTML document, Mark up Tags , Heading, Paragraphs , Line Breaks , HTML Tags.

UNIT - 4

Elements of HTML, Working with Text, Lists, Tables and Frames, Hyperlinks, Images and Multimedia Working with Forms and controls.

UNIT - 5

Introduction to Cascading Style Sheets, CSS Properties, CSS Styling (Background, Text Format, Controlling Fonts), Working with block elements and objects, Working with Lists and Tables, CSS Id and Class, Box Model (Introduction, Border properties, Padding Properties, Margin properties), CSS Advanced (Grouping, Dimension, Display, Positioning, Floating, Align, Pseudo class, Navigation Bar, Image Sprites, Attribute sector), CSS Color, Creating page Layout and Site Designs.

UNIT - 6

Introduction to Web Publishing or Hosting, Creating the Web Site, Saving the site, Working on the web site, Creating web site structure, Creating Titles for web pages, Themes, Publishing web sites.

- 1. J. N. Robbins, Learning Web Design, O'Reilly Media, 4th Edition, 2012
- 2. Steven M. Schafer, HTML, XHTML, and CSS Bible, Wiley India, 5th Edition, 2010
- **3.** John Duckett, Beginning HTML, XHTML, CSS, and JavaScript, Wiley India, 3rd Edition, 2009
- **4.** Hal Stern, David Damstra, Brad Williams, Professional WordPress: Design and Development, Wrox Publication, 3rd Edition, 2015
- **5.** E. Robson, E. Freeman, Head First HTML & CSS, O'Reilly Media, nd Edition, 2012.

BTEXOE604A

Digital System Design

3 Credits

Course Objectives:

- The concept and theory of digital Electronics are needed in almost all electronics and telecommunication engineering fields and in many other engineering and scientific disciplines as well.
- The main objective of this course is to lay the foundation for further studies in areas such as communication, VLSI, computer, microprocessor etc. One of the most important reasons for the unprecedented growth of digital electronics is the advent of integrated circuit.
- This course will explore the basic concepts of digital electronics.

Course outcomes:

At the end of this course students will demonstrate the ability to

- 1. Design and analyze combinational logic circuits
- 2. Design & analyze modular combinational circuits with MUX/DEMUX, Decoder, Encoder
- 3. Design & analyze synchronous sequential logic circuits
- 4. Use HDL & appropriate EDA tools for digital logic design and simulation.

UNIT - 1

Logic Simplification and Combinational Logic Design

Review of Boolean algebra and De Morgan's Theorem, SOP & POS forms, Canonical forms, Karnaugh maps up to 6 variables, Binary codes, Code Conversion.

UNIT - 2

MSI devices

Comparators, Multiplexers, Encoder, Decoder, Driver & Multiplexed Display, Half and Full Adders, Subtractors, Serial and Parallel Adders, BCD Adder, Barrel shifter and ALU.

UNIT - 3

Sequential Logic Design

Building blocks like S-R, JK and Master-Slave JK FF, Edge triggered FF, Ripple and Synchronous counters, Shift registers, Finite state machines, Design of synchronous FSM,

Algorithmic State Machines charts. Designing synchronous circuits like Pulse train generator, Pseudo Random Binary Sequence generator, Clock generation.

UNIT - 4

Logic Families and Semiconductor Memories

TTL NAND gate, Specifications, Noise margin, Propagation delay, fan-in, fan-out, Tristate TTL, ECL, CMOS families and their interfacing.

UNIT - 5

Memory Elements

Concept of Programmable logic devices like FPGA, Logic implementation using Programmable Devices.

UNIT - 6

VLSI Design flow

Design entry: Schematic, FSM & HDL, different modeling styles in VHDL, Data types and objects, Dataflow, Behavioral and Structural Modeling, Synthesis and Simulation VHDL constructs and codes for combinational and sequential circuits.

- 1. R.P. Jain, "Modern digital Electronics", Tata McGraw Hill, 4th edition, 2009.
- 2. Douglas Perry, "VHDL", Tata McGraw Hill, 4th edition, 2002.
- 3. W.H. Gothmann, "Digital Electronics- An introduction to theory and practice", PHI, 2nd edition, 2006.
- 4. D.V. Hall, "Digital Circuits and Systems", Tata McGraw Hill, 1989
- 5. Charles Roth, "Digital System Design using VHDL", Tata McGraw Hill 2nd edition 2012.

BTEXOE604B	Neural Network & Fuzzy System	3 Credits
------------	-------------------------------	-----------

Course Objectives:

- This course covers basic concepts of artificial neural networks, fuzzy logic systems and their applications.
- Its focus will be on the introduction of basic theory, algorithm formulation and ways to apply these techniques to solve real world problems.
- It deals with Introduction and different architectures of neural network
- It deals with the Application of Neural Networks.
- It deals with Fuzzy Logic Controller.
- It deals with applications of Fuzzy logic

Course Outcomes:

- 1. The student will be able to obtain the fundamentals and types of neural networks.
- 2. The student will have a broad knowledge in developing the different algorithms for neural networks.
- 3. Student will be able analyze neural controllers.
- 4. Student will have a broad knowledge in Fuzzy logic principles.
- 5. Student will be able to determine different methods of Deffuzification.

UNIT - 1

Introduction

Biological neurons, McCulloch and Pitts models of neuron, Types of activation function, Network architectures, Knowledge representation, Learning process: Error-correction learning, Supervised learning, Unsupervised learning, Learning Rules.

UNIT - 2

Single Layer Perception

Perception convergence theorem, Method steepest descent - least mean square algorithms.

UNIT - 3

Multilayer Perception

Derivation of the back-propagation algorithm, Learning Factors.

UNIT - 4

Radial Basis and Recurrent Neural Networks

RBF network structure theorem and the reparability of patterns, RBF learning strategies, K-means and LMS algorithms, comparison of RBF and MLP networks, Hopfield networks: energy function, spurious states, error performance.

UNIT - 5

Neuro-dynamics

Attractors, Neuro dynamical model, Adaptive Resonance theory, Towards the Self Organizing Feature Map. Brain-state-in- a-box model,

UNIT - 6

Fuzzy logic

Fuzzy sets, Properties, Operations on fuzzy sets, Fuzzy relation Operations on fuzzy relations, The extension principle, Fuzzy mean Membership functions, Fuzzification and defuzzification methods, Fuzzy controllers.

- 1. Simon Haykin, "Neural Network a Comprehensive Foundation", Pearson Education.
- **2.** Dr. S. N. Sivanandam, Mrs S.N. Deepa Introduction to Soft computing tool Wiley Publication.
- 3. Satish Kumar Neural Networks: A classroom Approach Tata McGraw-Hill.
- **4.** Zurada J.M., "Introduction to Artificial Neural Systems, Jaico publishers.
- 5. Thimothy J. Ross, "Fuzz V Logic with Engineering Applications", McGraw.
- **6.** Ahmad Ibrahim, "Introduction to Applied Fuzzy Electronics', PHI.

- 7. Rajsekaran S, VijaylakshmiPai, Neural Networks, Fuzzy Logic, and Genetic Algorithms, PHI.
- 8. Hagan, Demuth, Beale, ëNeural Network Designí, Thomson Learning
- 9. Christopher M Bishop Neural Networks for Pattern Recognition, Oxford Publication.
- **10.** William W Hsieh Machine Learning Methods in the Environmental Sciences Neural Network and Kernels Cambridge Publication.
- **11.** Dr. S. N. Sivanandam, Dr. S. Sumathi Introduction to Neural Network Using Matlab Tata McGraw-Hill

BTEXOE604D	Analog Integrated Circuit Design

3 Credits

Course Objectives:

- Introduction to Circuit Simulation & EM Simulations
- Deep Understanding of MOS Device Physics & Modeling
- Understanding of few transistor circuits like common gate, common source & common drain amplifiers with their frequency response
- Understanding of Operational Amplifier Design & Trade-offs
- Advanced Op-Amps and OTAs
- Temperature Compensated Biasing Schemes.

Course Outcomes:

At the end of the course, the student must be able to:

- 1. Design MOSFET based analog integrated circuits.
- 2. Analyze analog circuits at least to the first order.
- 3. Appreciate the trade-offs involved in analog integrated circuit design.
- 4. Understand and appreciate the importance of noise and distortion in analog circuits.

UNIT - 1

Introduction to Simulations

Introduction to Advanced Design System and Cadence Virtuoso, DC Simulations, AC Simulations, Harmonic Balance, Envelope Simulation, Electromagnetic Simulations- FEM, MOM, FDTD, Circuit Net listing.

UNIT - 2

MOSFET Device Physics & Modeling

MOSFET Structure, Threshold Voltage, Drain Current Equation, Transfer & Output Characteristics, Weak/Moderate/Strong Inversion, Linear/Triode/Saturation Region of Operation, Device Leakages and Losses, Short Channel Effects, High Frequency Small Signal Model of MOSFET, Cubic, BSIM and Materka Models of MOSFET.

UNIT - 3

Few Transistor Circuits

Current Mirrors, Common Source/Common Gate/Common Drain Amplifiers, Design and Analysis of CS/CG/CD Amplifiers, Cascode Amplifiers, Differential Gain Stage, Frequency Response & Design Trade-offs, Telescopic Cascode and Wide Swing Cascode Current Mirrors, PTAT, CTAT & Bandgap Bias Circuits.

UNIT - 4

Operational Amplifiers & OTAs

Design of Classical Op-Amps, Op-Amp Characteristics, Analysis and Trade-offs, Wideband Op-Amps, High Speed Op-Amps, Very High Gain Op-Amps, Operational Transconductance Amplifiers, Ultra Low Power OTAs for Medical Implants, Folded Cascode Op-Amps.

UNIT - 5

Biasing Schemes

Voltage and Current References, Vt reference bias, PTAT Current Reference, CTAT and Bandgap Voltage References, High Precision Voltage References, Voltage Level Shifters.

UNIT - 6

Non-Linear Circuits

Single and Balanced Diode Mixers, Translinear Cell, Gilbert Cell Mixers, Power Amplifiers, Even & Odd Order Mixing, In-Modulation (AM, PM Conversions) Distortions, Intermodulation Distortions, Intermodulation Products, ACPR & EVM.

TEXT/REFERENCE BOOKS

- 1. Tony Chan Carusone, David A. Johns, Kenneth W. Martin, "Analog Integrated Circuit Design", John Wiley & Sons
- 2. Keliu Shu, Edgar Sanchez-Sinencio, "CMOS PLL Synthesizers", Springer
- **3.** Jose' Carlos Pedro, Nuno Borges Carvalho, "Intermodulation Distortion in Microwave and Wireless Circuits", Artech House
- 4. Stephen A. Maas, "Microwave Mixers", Artech House.

BT	EX	OE	605	4
$\boldsymbol{\nu}$		UĽ	$\mathbf{u}\mathbf{v}\mathbf{v}$	

Embedded System Design

3 Credits

Course Objectives:

- To understand the embedded system design issues.
- To learn real time operating system concepts.
- To understand the Embedded Linux environment.
- To learn embedded software development and testing process.

Course Outcomes:

At the end of the course, students will demonstrate the ability to:

- 1. Suggest design approach using advanced controllers to real-life situations.
- 2. Design interfacing of the systems with other data handling / processing systems.
- 3. Appreciate engineering constraints like energy dissipation, data exchange speeds etc.
- 4. Get to know the hardware software co design issues and testing methodology for embedded system.

UNIT - 1

Introduction to Embedded Computing

The concept of embedded systems design, Characteristics of Embedding Computing Applications, Concept of Real time Systems.

UNIT - 2

Design Process

Requirements, Specifications, Architecture Design, Designing of Components, Embedded microcontroller cores, embedded memories. Examples of embedded systems.

UNIT - 3

Technological aspects of embedded systems

Interfacing between analog and digital blocks, signal conditioning, digital signal processing, subsystem interfacing, interfacing with external systems, user interfacing.

UNIT - 4

Design tradeoffs

Design tradeoffs due to process compatibility, thermal considerations, etc., Software aspects of embedded systems: real time programming languages and operating systems for embedded systems.

UNIT - 5

Operating System

Basic Features of an Operating System, Kernel Features: Real-time Kernels, Polled Loops System, Co-routines, Interrupt-driven System, Multi-rate System Processes and Threads, Context Switching: Cooperative Multi-tasking, Pre-emptive Multi-tasking.

UNIT - 6

Scheduling and Inter-process Communication

Rate-Monotonic Scheduling, Earliest-Deadline First Scheduling, Task Assignment, Fault-Tolerant Scheduling Signals, Shared Memory Communication, Message-Based Communication.

- 1. J.W. Valvano, "Embedded Microcomputer System: Real Time Interfacing", Brooks/Cole, 2000.
- 2. Jack Ganssle, "The Art of Designing Embedded Systems", Newness, 1999.

- 3. V.K. Madisetti, "VLSI Digital Signal Processing", IEEE Press (NY, USA), 1995.
- 4. David Simon, "An Embedded Software Primer", Addison Wesley, 2000.
- 5. K.J. Ayala, "The 8051 Microcontroller: Architecture, Programming, and Applications", Penram Intl, 1996

BTEXOE605B

Electronics System Design

3 Credits

Course Objectives:

- To understand the various processes and systems to address human needs by creating tangible Electronic Products.
- To pursue learners with emphasis on learning-by-doing and following a comprehensive process of design, engineering and producing products and systems.

Course Outcomes:

On completion of the course, student will be able to

- 1. Design electronic products using user centered design process
- 2. Develop sketches, virtual and physical appearance models to communicate proposed designs
- 3. Refine product design considering engineering design & manufacturing requirements and constraints.
- 4. Make mock-up model and working prototype along with design documentation.

UNIT - 1

Introduction to Industrial Design

General introduction in the course, role of ID in the domain of industry, product innovation, designer's philosophy and role in product design. Product development tools and methods.

UNIT - 2

Product Design Methodology and Product Planning

Electronic product design and development, Methodology, creativity techniques, brain storming, documentation, Defining the task, scheduling the task, estimation of labor cost and amount of documentation.

UNIT - 3

Ergonomics

Ergonomics of electronics electronic use of ergonomics at work places and plan layouts, ergonomics of panel design, case study.

UNIT - 4

Aesthetics and Visual Communication Techniques

Elements of aesthetics, aesthetics of control design, Visual Communication Techniques: perspective, band sketching and rendering technique, elements of Engineering drawing, assembly drawing part drawing, exploded views.

UNIT - 5

Product Anatomy and Product Detailing

Layout design, structure design, standard and non-standard structures, Industrials standards, Product detailing in sheet metal and plastics for ease of assembly, maintenance and aesthetics.

UNIT - 6

Product Manufacturing and Value Engineering

Different manufacturing processes in sheet metal and plastics, product finishing, finishing methods like platting, anodization, spray painting, powder coating etc, Introduction to marketing, graphics & packing.

- 1. Peter Z., "German Design Standard Vol 2", Reddot(2006)
- 2. Jordan P. W., "Designing Pleasurable Products: An Introduction to the New Human Factors." Taylor and Francis(2002)
- 3. Otto K. and Wood K., "Product design: Techniques in Reverse Engineering and New Product development", Prentice Hall. (2001)

- 4. Cross N. "Engineering Design Methods: Strategies for Product Design", Willey.(2000)
- 5. Cagan J. and Vogel C. M. (2007) Creating Breakthrough Products, "Innovation from Product Planning to Program Approval". Pearson Education
- 6. Coats D., "Watches Tell More than Time: Product Design, Information, Quest for elegance" McGraw Hill(2002)
- 7. Norman D. A., "The design of everyday things, Basic Books." (2002)
- 8. Chakrabarty D., "Indian Anthropometric Dimensions for Ergonomic Design Practice", NID, Ahmedabad (1999).
- 9. E.J. McCormic, Human factors in engineering design, McGraw Hill 1976

Journals

- 1. Behaviour & Information Technology, Taylor & Francis
- 2. The Journal of Sustainable Product Design, Publisher: Springer
- 3. International Journal of Design; College of Design, National Taiwan University of Science and Technology, Taiwan.
- 4. Virtual & Physical Prototyping, Taylor & Francis

Internet Sites

- 1. http://www.ulrich-eppinger.net/
- 2. http://www.npd-solutions.com
- 3. http://www.qfdi.org
- 4. http://www.cheshirehenbury.com/rapid/

BTEXOE605C

Project Management and Operation Research

3 Credits

Course Objectives:

- To help students understand Evolution of Management Thought, Concepts, basic functions and recent trends managerial concepts and practices for better business decisions.
- To introduce students to framework those are useful for diagnosing problems involving human behavior.
- To enable the students apply mathematical, computational and communication skills needed for the practical utility of Operations Research.

- To teach students about networking, inventory, queuing, decision and replacement models.
- To introduce students to research methods and current trends in Operations Research.

Course Outcomes:

Student will be able to

- 1. Apply operations research techniques like L.P.P, scheduling and sequencing in industrial optimization problems.
- 2. Solve transportation problems using various OR methods.
- 3. Illustrate the use of OR tools in a wide range of applications in industries.
- 4. Analyze various OR models like Inventory, Queing, Replacement, Simulation, Decision etc and apply them for optimization.
- 5. Gain knowledge on current topics and advanced techniques of Operations Research for industrial solutions.

UNIT - 1

Definition, need and importance of organizational behaviour, nature and scope, frame work, organizational behaviour models.

UNIT - 2

Organization structure, formation, groups in organizations, influence, group dynamics, emergence of informal leaders and working norms, group decision making techniques, interpersonal relations, communication, control.

UNIT - 3

Evolution of Management thoughts, Contribution of Selected Management Thinkers, Various approaches to management, contemporary management practice, Managing in global environment, Managerial functions.

UNIT - 4

Importance of planning, Types of planning, decision making process, Approaches to decision making, Decision models, Pay off Matrices, Decision trees, Break Even Analysis.

UNIT - 5

Departmentation, Span of Control, Delegation, Centralisation and Decentralisation, Committees, Line and Staff relationships, Recent trends in organisation structures.

UNIT - 6

Process of Recruitment, Selection, Induction Training, Motivation, Leading, Leadership styles and qualities, Communication, process and barriers. Managements control systems, techniques, Types of control.

TEXT/REFERENCE BOOKS

- 1. Bateman Snell, Management: Competing in the new era, McGraw, Hill Irwin, 2002.
- 2. Chandan J.S., Management Concepts and Strategies, Vikas Publishing House, 2002.
- 3. Hellriegel, Jackson and Slocum, Management: A Competency, Based Approach, South Western, 9th edition, 2002.
- 4. Koontz, Essentials of Management, Tata McGraw, Hill, 5th Edition, 2001.
- 5. Stephen P. Robbins and David A. Decenzo, Fundamentals of Management, Pearson Education, Third Edition, 2001.
- 6. Tim Hannagan, Management Concepts and Practices, Macmillan India Ltd., 1997.

BTEXOE605D Android Programming 3 Credits

Course Objectives:

Android Application Development course is designed to quickly get you up to speed with writing apps for Android devices. The student will learn the basics of Android platform and get to understand the application lifecycle

Course Outcomes:

At the end of the course, students will demonstrate the ability to write simple GUI applications, use built-in widgets and components, work with the database to store data locally, and much more.

UNIT - 1

Introduction to Mobile Operating Systems and Mobile Application Development Introduction to Mobile OS:

Palm OS, Windows CE, Embedded Linux, J2ME (Introduction), Symbian (Introduction),

Overview of Android: Devices running android, Why Develop for Android, Features of android, Architecture of Android, Libraries

How to setup Android Development Environment: Android development Framework - Android-SDK, Eclipse, Emulators – What is an Emulator / Android AVD? , Creating & setting up custom Android emulator, Android Project Framework, My first android application.

UNIT - 2

Android Activities, UI Design and Database

Understanding Intent, Activity, Activity Lifecycle and Manifest, Form widgets, Text Fields,

Layouts: Relative Layout, Table Layout, Frame Layout, Linear Layout, Nested layouts.

UI design: Time and Date, Images and media, Composite, Alert Dialogs & Toast, Popup.

Menu: Option menu, Context menu, Sub menu.

Database: Introducing SQLite, SQLite Open Helper, SQLite Database, Cursor,

Content providers: defining and using content providers, example- Sharing database among two different applications using content providers, Reading and updating Contacts, Reading bookmarks.

UNIT - 3

Preferences, Intents and Notifications

Preferences: Shared Preferences, Preferences from xml, Intents:Explicit Intents, Implicit intents. Notifications: Broadcast Receivers, Services (Working in background) and notifications, Alarms.

UNIT - 4

Telephony, SMS and Location Based Services

Telephony: Accessing phone and Network Properties and Status, Monitoring Changes in Phone State, Phone Activity and data Connection.

SMS: Sending SMS and MMS from your Application, sending SMS Manually, Listening for incoming SMS

Location based Services: Using Location Based Services, Working with Google Maps, Geocoder.

UNIT - 5

Accessing Android Hardware

Networking: An overview of networking, checking the network status, communicating with a server socket, Working with HTTP, Web Services.

Bluetooth: Controlling local Bluetooth device, Discovering and bonding with Bluetooth devices, Managing Bluetooth connections, communicating with Bluetooth.

UNIT - 6

Audio Video Handling

Playing Audio and Video, Recording Audio and Video, Using Camera and Taking Picture.

- 1. Reto Meier "Professional AndroidTM Application Development", Wrox Publications.
- 2. Lauren Dercy and Shande Conder "Sams teach yourself Android application development", Sams publishing
- 3. Hello Android, Introducing Google's Mobile Development Platform, Ed Burnette, Pragmatic Programmers, ISBN: 978-1-93435-617-3

BTHM606

Employability & Skill Development

2 Credits

Course Objectives:

- To develop analytical abilities.
- To develop communication skills.
- To introduce the students to skills necessary for getting, keeping and being successful in a profession.
- To expose the students to leadership and team-building skills.

Course Outcomes:

On completion of the course, student will be able to:

- 1. Have skills and preparedness for aptitude tests.
- 2. Be equipped with essential communication skills (writing, verbal and non-verbal)
- 3. Master the presentation skill and be ready for facing interviews.
- 4. Build team and lead it for problem solving.

UNIT - 1

Soft Skills & Communication basics

Soft skills Vs hard skills, Skills to master, Interdisciplinary relevance, Global and national perspectives on soft skills. Resume, Curriculum vitae, How to develop an impressive resume, Different formats of resume – Chronological, Functional, Hybrid, Job application or cover letter, Professional presentation- planning, preparing and delivering presentation, Technical writing.

UNIT - 2

Arithmetic and Mathematical Reasoning

Aspects of intelligence, Bloom taxonomy, multiple intelligence theory, Number sequence test, mental arithmetic (square and square root, LCM and HCF, speed calculation, reminder theorem).

UNIT - 3

Analytical Reasoning and Quantitative Ability

Matching, Selection, Arrangement, Verifications (Exercises on each of these types). Verbal aptitude (Synonym, Antonym, Analogy).

UNIT - 4

Grammar and Comprehension

English sentences and phrases, Analysis of complex sentences, Transformation of sentences, Paragraph writing, Story writing, Reproduction of a story, Letter writing, précis writing, Paraphrasing and e-mail writing.

UNIT - 5

Skills for interviews

Interviews- types of interviews, preparatory steps for job interviews, interview skill tips, Group discussion- importance of group discussion, types of group discussion, difference between group discussion, panel discussion and debate, personality traits evaluated in group discussions, tips for successful participation in group discussion, Listening skills- virtues of listening, fundamentals of good listening, Non-verbal communication-body movement, physical appearance, verbal sounds, closeness, time.

UNIT - 6

Problem Solving Techniques

Problem solving model: 1. Define the problem, 2. Gather information, 3. Identify various solution, 4. Evaluate alternatives, 5. Take actions, 6. Evaluate the actions.

Problem solving skills: 1. Communicate. 2. Brain storming, 3. Learn from mistakes.

- **1.** R. Gajendra Singh Chauhan, Sangeeta Sharma, "Soft Skills- An integrated approach to maximize personality", ISBN: 987-81-265-5639-7, First Edition 2016, Wiley.
- 2. Wren and Martin, "English grammar and Composition", S. Chand publications.
- 3. R. S. Aggarwal, "A modern approach to verbal reasoning", S. Chand publications.
- **4.** Philip Carter, "The Complete Book of Intelligence Test", John Willey & Sons Ltd.
- **5.** Philip Carter, Ken Russell, "Succeed at IQ test", Kogan Page.
- **6.** Eugene Ehrlich, Daniel Murphy, "Schaum's Outline of English Grammar", McGraw Hills.
- **7.** David F. Beer, David A. Mc Murrey, "A Guide to Writing as an Engineer", ISBN: 978-1-118-30027-5 4th Edition, 2014, Wiley.

BTEXC701

Antennas and Wave Propagation

3 Credits

Course Objectives:

- To understand the applications of electromagnetic engineering.
- To formulate and solve the Helmholtz wave equation and solve it for Uniform Plane Wave.
- To analyze and understand the Uniform plane wave propagation in various media.
- To solve the electric field and magnetic fields for a given wire antenna.

Course Outcomes:

After successfully completing the course students will be able to

- 1. Formulate the wave equation and solve it for uniform plane wave.
- 2. Analyze the given wire antenna and its radiation characteristics.
- 3. Identify the suitable antenna for a given communication system.

UNIT - 1

Uniform Plane Waves

Maxwell Equations in phasor form, Wave Equation, Uniform Plane wave in Homogeneous, free space, dielectric, conducting medium. Polarization: Linear, circular & Elliptical polarization, unpolarized wave. Reflection of plane waves, Normal incidence, oblique incidence, Electromagnetic Power and Poynting theorem and vector.

UNIT - 2

Wave Propagation

Fundamental equations for free space propagation, Friis Transmission equation, Attenuation over reflecting surface, Effect of earth's curvature. Ground, sky & space wave propagations. Structure of atmosphere. Characteristics of ionized regions. Effects of earth's magnetic field. Virtual height, MUF, Skip distance. Ionospheric abnormalities. Multi-hop propagation. Space link geometry. Characteristics of Wireless Channel: Fading, Multipath delay spread, Coherence Bandwidth, and Coherence Time.

UNIT - 3

Antenna Fundamentals

Introduction, Types of Antenna, Radiation Mechanism, Antenna Terminology: Radiation pattern, radiation power density, radiation intensity, directivity, gain, antenna efficiency, half power beam width, bandwidth, antenna polarization, input impedance, antenna radiation

efficiency, effective length, effective area, reciprocity. Radiation Integrals: Vector potentials A, J, F, M, Electric and magnetic fields electric and magnetic current sources, solution of inhomogeneous vector potential wave equation, far field radiation.

UNIT - 4

Wire Antennas

Analysis of Linear and Loop antennas: Infinitesimal dipole, small dipole, and finite length dipole half wave length dipole, small circular loop antenna. Complete Analytical treatment of all these elements.

UNIT - 5

Antenna Arrays

Antenna Arrays: Two element array, pattern multiplication N-element linear array, uniform amplitude and spacing, broad side and end-fire array, N-element array: Uniform spacing, nonuniform amplitude, array factor, binomial and Dolph Tchebyshev array. Planar Array, Circular Array, Log Periodic Antenna, Yagi Uda Antenna Array.

UNIT - 6

Antennas and Applications

Structural details, dimensions, radiation pattern, specifications, features and applications of following Antennas: Hertz & Marconi antennas, V- Antenna, Rhombic antenna. TW antennas. Loop antenna, Whip antenna, Biconical, Helical, Horn, Slot, Microstrip, Turnstile, Super turnstile & Lens antennas. Antennas with parabolic reflectors.

- 1. C. A. Balanis, "Antenna Theory Analysis and Design", John Wiley.
- 2. Mathew N O Sadiku, "Elements of Electromagnetics" 3rd edition, Oxford University Press.
- 3. John D Kraus, Ronald J Marhefka, Ahmad S Khan, Antennas for All Applications, 3rd Edition, the McGraw Hill Companies.
- 4. K. D. Prasad, "Antenna & Wave Propagation", Satya Prakashan, New Delhi.
- 5. John D Kraus, "Antenna& Wave Propagation", 4th Edition, McGraw Hill, 2010.
- 6. Vijay K Garg, Wireless Communications and Networking, Morgan Kaufmann Publishers, An Imprint of Elsevier, 2008.

BTEXPE702A	Digital Image Processing	3 Credits
------------	---------------------------------	-----------

Course Objectives:

- To learn the fundamental concepts of Digital Image Processing.
- To study basic image processing operations.
- To understand image analysis algorithms.
- To expose students to current applications in the field of digital image processing.

Course Outcomes:

After successfully completing the course students will be able to

- 1. Develop and implement algorithms for digital image processing.
- 2. Apply image processing algorithms for practical object recognition applications.

UNIT - 1

Fundamentals of Image Processing

Steps in image processing, Human Visual System, Sampling & quantization, Representing digital images, Spatial & gray-level resolution, Image file formats, Basic relationships between pixels, Distance Measures, Basic operations on images-image addition, subtraction, logical operations, scaling, translation, rotation, Image Histogram, Color fundamentals & models – RGB, HSI YIQ.

UNIT - 2

Image Enhancement and Restoration

Spatial domain enhancement: Point operations-Log transformation, Power-law transformation, Piecewise linear transformations, Histogram equalization. Filtering operations- Image smoothing, Image sharpening. Frequency domain enhancement: 2D DFT, Smoothing and Sharpening in frequency domain. Homomorphic filtering. Restoration: Noise models, Restoration using Inverse filtering and Wiener filtering.

UNIT - 3

Image Compression

Types of redundancy, Fidelity criteria, Lossless compression – Runlength coding, Huffman coding, Bit-plane coding, Arithmetic coding, Introduction to DCT, Wavelet transform. Lossy compression – DCT based compression, Wavelet based compression. Image and Video Compression Standards – JPEG, MPEG

UNIT - 4

Image Segmentation and Morphological Operations

Image Segmentation: Point Detections, Line detection, Edge Detection-First order derivative —Prewitt and Sobe, Second order derivative — LoG, DoG, Canny, Edge linking, Hough Transform, Thresholding — Global, Adaptive. Otsu's Method, Region Growing, Region Splitting and Merging, Morphological Operations: Dilation, Erosion, Opening, Closing, Hitor-Miss transform, Boundary Detection, Thinning, Thickening, Skeleton.

UNIT - 5

Representation and Description

Representation – Chain codes, Polygonal approximation, Signatures. Boundary Descriptors – Shape numbers, Fourier Descriptors, Statistical moments. Regional Descriptors – Topological, Texture, Principal Components for Description.

UNIT - 6

Object Recognition and Applications

Feature extraction, Patterns and Pattern Classes, Representation of Pattern classes, Types of classification algorithms, Minimum distance classifier, Correlation based classifier, Bayes classifier. Applications: Biometric Authentication, Character Recognition, Content based Image Retrieval, Remote Sensing, Medical application of Image processing.

- 1. Rafael C. Gonzalez and Richard E. Woods, "Digital Image Processing", Third Edition, Pearson Education.
- 2. S Sridhar, "Digital Image Processing", Oxford University Press.
- 3. Rafael C. Gonzalez, Richard E. Woods, and Steven L. Eddins, "Digital Image Processing Using MATLAB", Second Edition, Tata McGraw Hill Publication.
- 4. S Jayaraman, S Esakkirajan, T Veerakumar, "Digital Image Processing", Tata Mc Graw Hill Publication

BTEXPE702B Data Compression and Encryption/Cryptography 3 Credits

Course Objectives:

- To teach the students Lossless and Lossy compression techniques for different types of data.
- To understand data encryption techniques.
- Network security and ethical hacking.

Course Outcomes:

After successfully completion of the course, students will able to:

- 1. Implement text, audio and video compression techniques.
- 2. Understand symmetric and asymmetric key cryptography schemes.
- 3. Understand network security and ethical hacking.

UNIT - 1

Data Compression

Compression Techniques: Loss less compression, Lossy compression, measure of performance, modeling and coding, different types of models, and coding techniques Text Compression: Minimum variance Huffman coding, extended Huffman coding, Adaptive Huffman coding. Arithmetic coding, Dictionary coding techniques, LZ 77, LZ 78, LZW

UNIT - 2

Audio Compression

High quality digital audio, frequency and temporal masking, lossy sound compression, μ -law and A-law companding, and MP3 audio standard.

UNIT - 3

Image and Video Compression

PCM, DPCM JPEG, JPEG –LS, and JPEG 2000 standards, Intra frame coding, motion estimation and compensation, introduction to MPEG -2 H-264 encoder and decoder.

UNIT - 4

Data Security

Security goals, cryptography, stenography cryptographic attacks, services and mechanics, Integer arithmetic, modular arithmetic, and linear congruence, Substitution cipher,

transposition cipher, stream and block cipher, and arithmetic modes for block ciphers, Data encryption standard, double DES, triple DES, attacks on DES, AES, key distribution center.

UNIT - 5

Number Theory and Asymmetric Key Cryptography

Primes, factorization, Fermat's little theorem, Euler's theorem, and extended Euclidean algorithm, RSA, attacks on RSA, Diffie Hellman key exchange, key management, and basics of elliptical curve cryptography, Message integrity, message authentication, MAC, hash function, H MAC, and digital signature algorithm.

UNIT - 6

System Security

Malware, Intruders, Intrusion detection system, firewall design, antivirus techniques, digital Immune systems, biometric authentication, and ethical hacking.

- 1. Khalid Sayood, Introduction to Data Compression, Morgan Kaufmann, 2000.
- 2. David Saloman, Data Compression: The complete reference, Springer publication.
- 3. Behrous Forouzen, —Cryptography and Network Security, Tata McGraw–Hill Education 2011.
- 4. Berard Menezes, Network Security and Cryptography, learning publication Cengage.
- 5. William Stallings, Cryptography and Network Security, Pearson Education Asia Publication, 5th edition.

BTEXPE702D	Parallel Processing	3 Credits
2 1 2 1 2 1 0 2 2		0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Course Objectives:

- Learn the concepts of parallel processing as it pertains to high-performance computing.
- Learn to design parallel programs on high performance computing.
- Discuss issues of parallel programming.
- Learn the concepts of message passing paradigm using open source APIs.
- Learn different open source tools.
- Learn the concepts of Multi-core processor

Course Outcomes:

At the end of the course, students will demonstrate the ability to:

- 1. Describe different parallel processing platforms involved in achieving High
- 2. Performance Computing.
- 3. Discuss different design issues in parallel programming
- 4. Develop efficient and high performance parallel programming
- 5. Learn parallel programming using message passing paradigm using open source MPIs.
- 6. Design algorithms suited for Multicore processor and GPU systems using Open MP and CUDA.

UNIT - 1

Parallel Programming Platforms

Implicit Parallelism: Trends in Microprocessor Architectures ,Limitations of Memory System Performance, Dichotomy of Parallel Computing Platforms, Physical Organization of Parallel Platforms, Communication Costs in Parallel Machines, Routing Mechanisms for Interconnection Networks, Impact of Process-Processor Mapping and Mapping Techniques.

UNIT - 2

Principles of Parallel Algorithm Design algorithms

Preliminaries, Decomposition Techniques, Characteristics of Tasks and Interactions, Mapping Techniques for Load Balancing, Methods for Containing Interaction Overheads, Parallel Algorithm Models.

UNIT - 3

Basic Communication Operations and algorithms

One-to-All Broadcast and All-to-One Reduction, All-to-All Broadcast and Reduction, All-Reduce and Prefix-Sum Operations, Scatter and Gather, All-to-All Personalized Communication, Circular Shift, Improving the Speed of Some Communication Operations.

UNIT - 4

Analytical Modeling of Parallel Programs

Sources of Overhead in Parallel Programs, Performance Metrics for Parallel Systems, Effect of Granularity and Data Mapping on Performance, Scalability of Parallel Systems, Minimum Execution Time and Minimum Cost-Optimal Execution Time, Asymptotic Analysis of Parallel Programs, Other Scalability Metrics.

UNIT - 5

Programming Using the Message Passing Paradigm

Principles of Message-Passing Programming, the Building Blocks: Send and Receive Operations, MPI: The Message Passing Interface, Topologies and Embedding, Overlapping Communication with Computation, Collective Communication and Computation Operations, Groups and Communicators

UNIT - 6

Programming Shared Address Space Platforms Thread Basics

Threads, the POSIX Thread Application Programmer Interface, Synchronization Primitives in POSIX, Controlling Thread and Synchronization Attributes, Thread Cancellation, Composite Synchronization Constructs.

- 1. Introduction to parallel programming, Ananth Grama, Anshul Gupta, George Karypis, Vipin Kumar, Pearson Publication.
- 2. Introduction to Parallel Processing, M. SasiKumar, Dinesh Shikhare P.Raviprakash, PHI Publication.

BTEXPE703A	IoT 4.0	3 Credits
DIEAIE/USA	101 4.0	3 Cleuits

Course Objectives:

- Students will be explored to the interconnection and integration of the physical world and the cyber space.
- To provide ability to design and develop IOT devices.

Course Outcomes:

- 1. Learner will be able to understand the meaning of internet in general and IOT in terms of layers, protocols, packets peer to peer communication
- 2. Learner will be able to interpret IOT working at transport layer with the help of various protocols.
- 3. Learner will be able to understand IOT concept at data link layer.
- 4. Learner will be able to apply the concept of mobile networking to the internet connected devices.
- 5. Learner will be able to measure and schedule the performance of networked devices in IOT.
- 6. Learner will be able to analyze the challenges involve in developing IOT architecture.

UNIT - 1

Introduction

What is the Internet of Things: History of IoT, about objects/things in the IoT, Overview and motivations, Examples of applications, IoT definitions, IoT Frame work, General observations, ITU-T views, working definitions, and basic nodal capabilities.

UNIT - 2

Fundamental IoT Mechanisms & Key Technologies:

Identification of IoT objects and services, Structural aspects of the IoT, Environment characteristics, Traffic characteristics ,scalability, Interoperability, Security and Privacy, Open architecture, Key IoT Technologies ,Device Intelligence, Communication capabilities, Mobility support, Device Power, Sensor Technology, RFID technology, Satellite Technology.

UNIT - 3

Radio Frequency Identification Technology:

Introduction, Principles of RFID, Components of an RFID system, Reader, RFID tags, RFID middleware, Issue. Wireless Sensor Networks: History and context, node, connecting nodes, networking nodes, securing communication.

UNIT - 4

Wireless Technologies For IoT: Layer ½ Connectivity:

WPAN Technologies for IoT/M2M, Zigbee /IEEE 802.15.4, Radio Frequency for consumer Electronics (RF4CE), Bluetooth and its low-energy profile, IEEE 802.15.6 WBANS, IEEE 802.15 WPAN TG4j, MBANS, NFC, dedicated short range communication (DSRC) & related protocols. Comparison of WPAN technologies cellular & mobile network technologies for IoT/M2M.

UNIT - 5

Governance of The Internet of Things:

Introduction, Notion of governance, aspects of governance, Aspects of governance Bodies subject to governing principles, private organizations, International regulation and supervisor, substantive principles for IoT governance, Legitimacy and inclusion of stakeholders, transparency, accountability. IoT infrastructure governance, robustness, availability, reliability, interoperability, access. Future governance issues, practical implications, legal implications.

- 1. Hakima Chaouchi, The Internet of Things, Connecting Objects to the Web, Wiley Publications
- 2. Daniel Minoli, Building the Internet of Things with IPv6 and MIPv6 The Evolving World of M2M Communications, Wiley Publications
- 3. Bernd Scholz-Reiter, Florian Michahelles, Architecting the Internet of Things, ISBN 978-3842-19156-5, Springer.

4. Olivier Hersent, David Boswarthick, Omar Elloumi, The Internet of Things Key Applications and Protocols, ISBN 978-1-119-99435-0, Wiley Publications.

BTEXPE703B Wireless Sensor Networks 3 Credits

Course Objectives:

- To introduce the emerging research areas in the field of wireless sensor networks
- To understand different protocols and there uses in WSN.

Course Outcomes:

At the end of the course the students will be able to

- 1. Design wireless sensor networks for a given application
- 2. Understand emerging research areas in the field of sensor networks
- 3. Understand MAC protocols used for different communication standards used in WSN
- 4. Explore new protocols for WSN.

UNIT - 1

Introduction

Introduction to Sensor Networks, unique constraints and challenges, Advantage of Sensor Networks, Applications of Sensor Networks, Types of wireless sensor networks

UNIT - 2

Networks

Mobile Ad-hocNetworks (MANETs) and Wireless Sensor Networks, Enabling technologies for Wireless Sensor Networks. Issues and challenges in wireless sensor networks.

UNIT - 3

Protocols

Routing protocols, MAC protocols: Classification of MAC Protocols, S-MAC Protocol, B-MAC protocol, IEEE 802.15.4 standard and ZigBee

UNIT - 4

Dissemination protocol for large sensor network, Data dissemination, data gathering, and data fusion; Quality of a sensor network; Real-time traffic support and security protocols.

UNIT - 5

Design Principles for WSNs, Gateway Concepts Need for gateway, WSN to Internet Communication, and Internet to WSN Communication.

UNIT - 6

Single-node architecture, Hardware components & design constraints, Operating systems and execution environments.

TEXT/REFERENCE BOOKS

- 1. Waltenegus Dargie, Christian Poellabauer, "Fundamentals Of Wireless Sensor Networks Theory And Practice", By John Wiley & Sons Publications, 2011.
- 2. Sabrie Soloman, "Sensors Handbook" by McGraw Hill publication. 2009
- 3. Feng Zhao, Leonidas Guibas, "Wireless Sensor Networks", Elsevier Publications, 2004
- 4. Kazem Sohrby, Daniel Minoli, "Wireless Sensor Networks": Technology, Protocols and Applications, Wiley-Inter science
- 5. Philip Levis, And David Gay "TinyOS Programming" by Cambridge University Press 2009

BTEXPE703C CMOS Design 3 Credits

Course Objectives:

- To develop an understanding of design different CMOS circuits using various logic families along with their circuit layout.
- To introduce the student how to use tools for VLSI IC design.

Course Outcomes:

At the end of the course the students will be able to

- 1. Design different CMOS circuits using various logic families along with their circuit layout.
- 2. Use tools for VLSI IC design.

UNIT - 1

Review of MOS transistor models, Non-ideal behavior of the MOS Transistor, Transistor as a switch, Inverter characteristics.

UNIT - 2

Integrated Circuit Layout: Design Rules, Parasitics

UNIT - 3

Delay: RC Delay model, linear delay model, logical path efforts

UNIT - 4

Power, interconnect and Robustness in CMOS circuit layout

UNIT - 5

Combinational Circuit Design: CMOS logic families including static, dynamic and dual rail logic

UNIT - 6

Sequential Circuit Design: Static circuits, Design of latches and Flip-flops.

TEXT/REFERENCE BOOKS

- 1. N.H.E. Weste and D.M. Harris, CMOS VLSI design: A Circuits and Systems Perspective, 4th Edition, Pearson Education India, 2011.
- 2. C. Mead and L. Conway, Introduction to VLSI Systems, Addison Wesley, 1979.
- 3. J. Rabaey, Digital Integrated Circuits: A Design Perspective, Prentice Hall India, 1997.
- 4. P. Douglas, VHDL: programming by example, McGraw Hill, 2013.
- L. Glaser and D. Dobberpuhl, The Design and Analysis of VLSI Circuits, Addison Wesley, 1985

BTEXPE703D Process Instrumentation 3 Credits

Course Objectives:

Course Outcomes:

At the end of the course the students will be able to

- 1. Understand various processes.
- 2. Develop Instrumentation for these processes.

- 3. Apply the control strategies for various process applications.
- 4. Mapping with PEOs.

UNIT - 1

Instrumentation for heat exchangers and dryers

Operation of heat exchanger, controlled and manipulated variables in heat exchanger control problem, instrumentation for feedback, feed-forward, cascade control strategies for heat exchanger, types and operation of dryers, controlled and manipulated variables in dryer control problem, instrumentation for feedback and feed-forward control of various types of dryers.

UNIT - 2

Instrumentation for evaporators & crystallizer

Types and operation of evaporators, Controlled and manipulated variables in evaporator control problem, instrumentation for feedback, feed-forward, cascade control strategies for evaporators, types and operation of crystallizers, controlled and manipulated variables in crystallizer control problem, instrumentation for control of various types of crystallizers.

UNIT - 3

Instrumentation for distillation columns

Operation of distillation column, manipulated and controlled variables in distillation column control, instrumentation for flow control of distillate, top and bottom composition control, reflux ratio control, pressure control schemes.

UNIT - 4

Boiler Instrumentation

Operation of boiler, manipulated and controlled variables in boiler control, safety interlocks and burner management system, instrumentation for boiler pressure controls, air to fuel ratio controls, boiler drum level controls, steam temperature control, optimization of boiler efficiency, operation and types of reactors, instrumentation for temperature, pressure control in CSTRs.

UNIT - 5

Instrumentation for pumps

Types and operation of pumps, manipulated and controlled variables in pump control problem, pump control methods and instrumentation for pump control.

UNIT - 6

Instrumentation for compressors

Types and operation of compressors, capacity control methods of compressors, instrumentation for control of different variables in centrifugal, rotary and reciprocating compressors including surge and anti-surge control.

TEXT/REFERENCE BOOKS

- 1. "Process Control, Instrument Engineering Hand book", B.G. Liptak, Chilton Book Company.
- 2. "Hand book of Process Instrumentation", Considine, McGraw Hill Publishing company.

BTEXPE704A

Microwave Theory and Techniques

3 Credits

Course Objectives:

- To lay the foundation for microwave engineering
- To understand the applications of microwave engineering
- Carryout the microwave network analysis.

Course Outcomes:

After successfully completing the course students will be able to

- 1. Formulate the wave equation in wave guide for analysis.
- 2. Identify the use of microwave components and devices in microwave applications.
- 3. Understand the working principles of all the microwave tubes
- 4. Understand the working principles of all the solid state devices
- 5. Choose a suitable microwave tube and solid state device for a particular application
- 6. Carry out the microwave network analysis
- 7. Choose a suitable microwave measurement instruments and carry out the required measurements.

UNIT - 1

Transmission Lines and Waveguides

Introduction to Microwaves engineering: History of Microwaves, Microwave Frequency bands, Applications of Microwave, General solution for TEM, TE and TM waves, Parallel plate waveguide, and rectangular waveguide, Wave guide parameters, Introduction to coaxial line, Rectangular waveguide cavity resonators, Circular waveguide cavity resonators.

UNIT - 2

Microwave Components

Multi-port junctions: Construction and operation of E-plane, H-plane, Magic Tee and Directional couplers.

Ferrites components: - Ferrite Composition and characteristics, Faraday rotation, Construction and operation of Gyrator, Isolator and Circulator.

Striplines: Structural details and applications of Striplines, Microstrip line, Parallel Strip line, Coplanar Strip line, Shielded Strip Line.

UNIT - 3

Microwave Network Analysis

Introduction and applications of Impedance and Equivalent voltages and currents, Impedance and Admittance matrices, The Transmission (ABCD) matrix

Scattering Matrix:-Significance, formulation and properties. S-Matrix calculations for-2 port network junction, E plane, H-plane and E-H (Magic Tee) Tees, Directional coupler, Isolator and Circulator, Related problems

UNIT - 4

Microwave Tubes

Limitations of conventional tubes, O and M type classification of microwave tubes, reentrant cavity, velocity modulation

O type tubes.

Two cavity Klystron: Construction and principle of operation, velocity modulation and bunching process Applegate diagram.

Reflex Klystron: Construction and principle of operation, velocity modulation and bunching process, Applegate diagram, Oscillating modes, o/p characteristics, efficiency, electronic & mechanical tuning.

M-type tubes

Magnetron: Construction and Principle of operation of 8 cavity cylindrical travelling wave magnetron, hull cutoff condition, modes of resonance, PI mode operation, o/p characteristics, Applications.

Slow wave devices

Advantages of slow wave devices, Helix TWT: Construction and principle of operation, Applications.

UNIT - 5

Microwave Solid State Devices

Microwave bipolar transistor, FET, MESFET, Varactor Diode, PIN Diode, Shottky Barrier Diode, Tunnel Diode, TEDs, Gunn Diodes, IMPATT diode and TRAPATT diode. Structural details, Principle of operation, various modes, specifications, and applications of all these devices.

UNIT - 6

Microwave Measurements

Measurement devices: Slotted line, Tunable detector, VSWR meter, Power Meter, S-parameter measurement, frequency measurements, Power measurement, Attenuation measurement, Phase shift measurement, VSWR measurement, Impedance measurement, Q of cavity resonator measurement.

- 1. Samuel Y. Liao, "Microwave Devices and Circuits", 3rd edition, Pearson
- 2. David M. Pozar, "Microwave Engineering", Fourth edition, Wiley.
- 3. M. Kulkarni, "Microwave and Radar engineering", 3rd edition, Umesh Publications
- 4. M L Sisodia & G S Raghuvamshi, "Microwave Circuits and Passive Devices" Wiley, 1987
- 5. M L Sisodia & G S Raghuvanshi, "Basic Microwave Techniques and Laboratory
- 6. Manual", New Age International (P) Limited, Publishers.

tellite Communication	3 Credits
te	ellite Communication

Course Objectives:

- To provide students with good depth of knowledge in radar and Satellite communication.
- Knowledge of theory and practice of advanced communication techniques e.g. TDMA, CDMA, FDMA.
- This will equip the students for further studies and research knowledge of modern applications in radar and Satellite communication.

Course Outcomes:

At the end of the course, the students will have:

- 1. Knowledge of theory and practice related to radar and Satellite communication.
- 2. Ability to identify, formulate and solve engineering problems related to radar and Satellite communication.
- 3. The student would be able to analyze the various aspects of establishing a geostationary satellite communication link.
- 4. Acquired knowledge about Satellite Navigation System.
- 5. Acquired knowledge about Radar and Radar Equations.

UNIT - 1

Radar Communication

Basic principles and fundamentals, block diagram of basic radar, classification, radar performance factors, radar range equation, f actors influencing maxi mum range, effects of noise, Pulsed radar systems, block diagram and description, antennas and scanning, display methods, moving target indication, radar beacons, other radar systems such as CW Doppler radar, FM CW Doppler radar, phased array radars, planar array radars, various applications of radar such as navigational aids, military, surveillance.

UNIT - 2

Basic Principles satellite communication systems

General features, frequency allocation for satellite services, properties of satellite communication systems, Earth Station: Introduction, earth station subsystem, different types of earth stations

Satellite Orbits

Introduction, Kepler's laws, orbital dynamics, orbital characteristics, satellite spacing and orbital capacity, angle of elevation, eclipses, launching and positioning, satellite drift and station keeping.

UNIT - 3

Satellite Construction (Space Segment)

Introduction; attitude and orbit control system; telemetry, tracking and command; power systems, communication subsystems, antenna subsystem, equipment reliability and space qualification.

UNIT - 4

Satellite Links

Introduction, general link design equation, system noise temperature, uplink design, downlink design, complete link design, effects of rain.

UNIT - 5

The Space Segment Access and Utilization

Introduction, space segment access methods: TDMA, FDMA, CDMA, SDMA, assignment methods.

UNIT - 6

The Role and Application of Satellite Communication

Introduction to Digital Satellite and Mobile Satellite Communication.

- 1. Skolnik, "Principles of Radar Engineering" MCH.
- 2. Timothy Pratt, Charles W. Bostian, Satellite Communications, John Wiley & Sons
- 3. Dennis Roddy, Satellite Communications, 3rd Ed., McGraw-Hill International Ed. 2001
- 4. W. L. Pritchard, J. A. Sciulli, Satellite Communication Systems Engineering, Prentice- Hall, Inc., NJ
- 5. M. O. Kolawole, Satellite Communication Engineering, Marcel Dekker, Inc. NY
- 6. Robert Gagliardi, "Satellite Communication", CBS Publication
- 7. Ha, "Digital Satellite Communication", McGraw-Hill.

BTEXPE704C

Fiber Optic Communication

3 Credits

Course Objectives:

- To learn the basic elements of optical fiber transmission link, fiber modes configurations and structures.
- To understand the different kind of losses, signal distortion in optical wave guides and other signal degradation factors.
- To learn the various optical source materials, LED structures, quantum efficiency, Laser diodes
- Understand the functionality of each of the components that comprise a fiber-optic communication system: transmitter, fiber, amplifier, and receiver.
- Understand the properties of optical fiber that affect the performance of a communication link.
- Understand basic optical amplifier operation and its effect on signal power and noise in the system.
- Apply concepts listed above to the design of a basic communication link.

Course Outcomes:

At the end of the course, students will demonstrate the ability to:

- 1. Understand the principles fiber-optic communication, the components and the bandwidth advantages.
- 2. Understand the properties of the optical fibers and optical components.
- 3. Understand operation of lasers, LEDs, and detectors
- 4. Analyze system performance of optical communication systems
- 5. Design optical networks and understand non-linear effects in optical fibers

UNIT - 1

Introduction

Introduction to vector nature of light, propagation of light, propagation of light in a cylindrical dielectric rod, Ray model, wave model.

UNIT - 2

Types of optical fibers

Different types of optical fibers, Modal analysis of a step index fiber, Signal degradation on optical fiber due to dispersion and attenuation. Fabrication of fibers and measurement techniques like OTDR.

UNIT - 3

Optical sources

LEDs and Lasers, Photo-detectors - pin-diodes, APDs, detector responsivity, noise, optical receivers. Optical link design - BER calculation, quantum limit, power penalties.

UNIT - 4

Optical switches

Coupled mode analysis of directional couplers, electro-optic switches.

UNIT - 5

Optical amplifiers

EDFA, Raman amplifier, WDM and DWDM systems, Principles of WDM networks.

UNIT - 6

Nonlinear effects in fiber optic links

Nonlinear effects in fiber optic links, Concept of self-phase modulation, group velocity dispersion and solition based communication.

- 1. J. Keiser, Fibre Optic communication, McGraw-Hill, 5th Ed. 2013 (Indian Edition).
- 2. T. Tamir, Integrated optics, (Topics in Applied Physics Vol.7), Springer-Verlag, 1975.
- 3. J. Gowar, Optical communication systems, Prentice Hall India, 1987.
- 4. S.E. Miller and A.G. Chynoweth, eds., Optical fibres telecommunications, Academic Press, 1979.
- 5. G. Agrawal, Nonlinear fibre optics, Academic Press, 2nd Ed. 1994.
- 6. G. Agrawal, Fiber optic Communication Systems, John Wiley and sons, New York, 1997

7. F.C. Allard, Fiber Optics Handbook for engineers and scientists, McGraw Hill, New York, 1990.

BTEXPE704D Wireless Communication 3 Credits

Course Objectives:

- The objective of the course is to introduce the Concepts of basic wireless mobile communication systems.
- To learn and understand the basic principles of Telecommunication switching, traffic and networks.
- To learn and understand basic concepts of cellular system, wireless propagation and the techniques used to maximize the capacity of cellular network.
- To learn and understand architecture of GSM and CDMA system.
- To understand mobile management, voice signal processing and coding in GSM and CDMA system.

Course Outcomes:

After successfully completing the course students will be able to

- 1. Explain and apply the concepts telecommunication switching, traffic and networks.
- 2. Analyze the telecommunication traffic.
- 3. Analyze radio channel and cellular capacity.
- 4. Explain and apply concepts of GSM and CDMA system.

UNIT - 1

Introduction and Cellular Concept

Existing technology, Evolution in wireless systems, Trends in cellular system Frequency Reuse channel Assignment Strategies, Handoff Strategies, Interference and System Capacity, Cellular System, Design in worst case with an omni Directional Antenna, Co-Channel Interference Reduction with use of Directional Antenna, Improving Coverage and Capacity in Cellular systems, Trunking and Grade of service

UNIT - 2

Wireless Communication Systems GSM

GS Services and features, GSM Architecture and interfaces, GSM Radio Sub System, GSM Channel Types , Traffic Channels, Control Channels, Example of a GSM call, Frame structure for GSM , Signal Processing in GSM, GPRS.

UNIT - 3

Wideband Modulation Techniques and OFDM

Basic Principles, OFDM Signal Mathematical representation, Block Diagram, Selection Parameters for modulation, Pulse shaping, Windowing, Spectral Efficiency, Synchronization

UNIT - 4

Wireless Communication Systems CDMA IS95

Direct sequence Spread Spectrum, Spreading codes, Multipath Signal Propagation and RAKE receiver, Frame Quality and BER Requirements, Critical challenges of CDMA, TIA IS95 System, Physical and Logical Channels of IS95, CDMA IS95 call processing, soft hand off and power control in CDMA, Access and Paging Channel Capacity, Reverse and Forward Link Capacity of a CDMA System.

UNIT - 5

Wireless Communication Systems

CDMA 2000: CDMA layering structure, CDMA 2000 channels, logical channels, forward link physical, forward link features, reverse physical channels, CDMA 2000 Media Access control and LAC sub layer, Data services, Data services in CDMA 2000, mapping of logical channels to physicals, evolution of CDMA IS95 to CDMA 2000.

UNIT - 6

More Wireless Communication Systems

Bluetooth, Wi-Fi Standards, WIMAX, Wireless Sensor Networks, Zigbee, UWB, IEEE 802.20 and Beyond.

- 1. Wireless Communication: Principles and Practice Theodare. S. Rappaport- Pearson Education.
- 2. Wireless Communication: Upena Dalal, Oxford Higher Education.
- 3. Wireless Network Evolution: 2G to 3G, Vijay. K. Garg, Pearson Education.

- 4. Principles and Application of GSM, Vijay Garg, Joseph. E. Wilkes Pearson Education.
- 5. Mobile Cellular Telecommunications: Analog and Digital Systems, William C. Y. Lee, Tata McGraw Hill Edition.
- 6. Introduction to Wireless Telecommunication Systems and Networks- Gary. J. Mullet, DELMAR CENGAGE Learning.
- 7. Wireless Communications and Networks: 3G and Beyond, ITI Saha Misra, Tata McGraw Hill Edition.
- 8. Fundamentals of Wireless Communication: David Tse, Pramod Viswanath, CAMBRIDGE University Press.
- 9. Mobile Wireless communications, Mischa Schwartz, CAMBRIDGE University Press.

BTETPE801A

Introduction to Internet of Things

4 Credits

PROF. SUDIP MISRA Dept. of Computer Science and Engineering IIT Kharagpur Course Duration: 12 week

Course Outline:

Internet of Things (IoT) is presently a hot technology worldwide. Government, academia, and industry are involved in di-erent aspects of research, implementation, and business with IoT. IoT cuts across di-erent application domain verticals ranging from civilian to defence sectors. These domains include agriculture, space, healthcare, manufacturing, construction, water, and mining, which are presently transitioning their legacy infrastructure to support IoT. Today it is possible to envision pervasive connectivity, storage, and computation, which, in turn, gives rise to building di-erent IoT solutions. IoT-based applications such as innovative shopping system, infrastructure management in both urban and rural areas, remote health monitoring and emergency notication systems, and transportation systems, are gradually relying on IoT based systems. Therefore, it is very important to learn the fundamentals of this emerging technology.

Course Plan:

Week 01: Introduction to IoT, Sensing, Actuation, Basics of Networking.

Week 02: Basics of Networking, Communication Protocols.

Week 03 : Communication Protocols, Sensor Networks

Week 04: Sensor Networks, Machine-to-Machine Communications.

Week 05: Interoperability in IoT, Introduction to Arduino Programming, Integration of Sensors and Actuators with Arduino.

Week 06: Introduction to Python programming, Introduction to Raspberry.

Week 07: Implementation of IoT with Raspberry Pi, Introduction to SDN.

Week 08: SDN for IoT, Data Handling and Analytics, Cloud Computing

Week 09: Cloud Computing, Sensor-Cloud.

Week 10: Fog Computing, Smart Cities and Smart Homes

Week 11: Connected Vehicles, Smart Grid, Industrial IoT

Week 12: Industrial IoT, Case Study: Agriculture, Healthcare, Activity Monitoring

BTETPE801B

Computer Vision and Image Processing

4 Credits

Dr. M. K. Bhuyan

Professor, Indian Institute of Technology Guwahati,

Course Duration: 12 week

Course Outline:

The course familiarizes students with fundamental concepts and issues related to computer vision and major approaches that address them. The focus of the course is on image acquisition and image formation models, radiometric models of image formation, image formation in the camera, image processing concepts, concept of feature extraction and feature selection for pattern classification/recognition, and advanced concepts like object classification, object tracking, image-based rendering, and image registration. Intended to be a companion to a typical teaching course on computer vision, the course takes a problem-solving approach

Course Plan:

I Image Formation and Image Processing

Introduction to Computer Vision and Basic Concepts of Image Formation

Introduction and Goals of Computer Vision, Image Formation and Radiometry, Geometric Transformation, Geometric Camera Models, Image Reconstruction from a Series of Projections

Image Processing Concepts

Fundamentals of Image Processing, Image Transforms, Image Filtering, Colour Image Processing, Mathematical Morphology, Image Segmentation

II Image Features

Image Descriptors and Features

Texture Descriptors, Colour Features, Edge Detection, Object Boundary and Shape Representations, Interest or Corner Point Detectors, Histogram of Oriented Gradients (HOG), Scale Invariant Feature Transform (SIFT), Speeded up Robust Features (SURF), Saliency

III Recognition

Fundamental Pattern Recognition Concepts

Introduction to Pattern Recognition, Linear Regression, Basic Concepts of Decision Functions, Elementary Statistical Decision Theory, Gaussian Classifier, Parameter Estimation, Clustering for Knowledge Representation, Dimension Reduction, Template Matching, Artificial Neural Network (ANN) for Pattern Classification, Convolutional Neural Networks (CNNs), Autoencoder

IV Applications

Applications of Computer Vision

Machine Learning Algorithms and their Applications in Medical Image Segmentation, Motion Estimation and Object Tracking, Face and Facial Expression Recognition, Gesture Recognition, Image Fusion, Programming Examples

BTETPE801C

Biomedical Signal Processing

4 Credits

Prof. Sudipta Mukhopadhyay ,IIT Kharagpur

Course Duration: 12 week

Course outline:

This course is prepared for the engineering students in their final year of undergraduate studies or in their graduate studies. Electrical Engineering students with a good background in Signals and Systems are prepared to take this course. Students in other engineering disciplines, or in computer science, mathematics, geo physics or physics should also be able to follow this course. While a course in Digital Signal Processing would be useful, it is not necessary for a capable student. The course has followed problem solving approach as engineers are known as problem solvers. The entire course is presented in the form of series of problems and solutions.

Course Plan:

- Week 1: Preliminaries; Biomedical signal origin & dynamics (ECG)
- Week 2: Biomedical signal origin & dynamics (EEG, EMG etc.)
- Week 3: Filtering for Removal of artifacts Statistical Preliminaries; Time domain filtering (Synchronized Averaging, Moving Average)
- Week 4: Filtering for Removal of artifacts contd. Time domain filtering (Moving Average Filter to Integration, Derivative-based operator), Frequency Domain Filtering (Notch Filter)
- Week 5: Filtering for Removal of artifacts contd. Optimal Filtering: The Weiner Filter
- Week 6: Filtering for Removal of artifacts contd. Adaptive Filtering Selecting Appropriate Filter
- Week 7: Event Detection Example events (viz. P, QRS and T wave in ECG) Derivative based Approaches for QRS Detection Pan Tompkins Algorithm for QRS Detection
- Week 8: Event Detection contd. Dicrotic Notch Detection Correlation Analysis of EEG Signal
- Week 9: Waveform Analysis Illustrations of problem with case studies Morphological Analysis of ECG Correlation coefficient The Minimum phase correspondent and Signal Length
- Week 10: Waveform Analysis contd. Envelop Extraction Amplitude demodulation The Envelogram Analysis of activity Root Mean Square value Zero-crossing rate Turns Count, Form factor
- Week 11: Frequency-domain Analysis Periodogram
- Week 12: Frequency-domain Analysis Averaged Periodogram Blackman-Tukey Spectral Estimator Daniell's Spectral Estimator Measures derived from PSD

BTETPE 802A

Industrial Automation and Control

4 Credits

Prof. S. Mukhopadhyay Department of Electrical Engineering IIT Kharagpur Course Duration: 12 week

Course Plan:

Week 1: Introduction to Industrial Automation and Control , Architecture of Industrial Automation Systems, Introduction to sensors and measurement systems

Week 2: Temperature measurement, Pressure and Force measurements, Displacement and speed measurement, Flow measurement techniques, Measurement of level, humidity, pH etc

Week 3: Signal Conditioning and Processing, Estimation of errors and Calibration

Week 4: Introduction to Process Control, P-- I -- D Control, Controller Tuning.

Week 5: Implementation of PID Controllers, Special Control Structures: Feedforward and Ratio Control. Predictive Control, Control of Systems with Inverse Response, Cascade Control, Overriding Control, Selective Control, Split Range Control

Week 6: Introduction to Sequence Control, PLCs and Relay Ladder Logic Sequence Control : Scan Cycle, RLL Syntax , Structured Design Approach

Week 7: Sequence Control: Advanced RLL Programming, The Hardware environment

Week 8: Control of Machine tools: Introduction to CNC Machines, Analysis of a control loop

Week 9 : Introduction to Actuators : Flow Control Valves , Hydraulic Actuator Systems : Principles, Components and Symbols , Pumps and Motors, Proportional and Servo Valves

Week 10: Pneumatic Control Systems: System Components, Controllers and Integrated Control Systems, Electric Drives: Introduction, Energy Saving with Adjustible Speed Drives, Step motors: Principles, Construction and Drives

Week 11: DC Motor Drives: Introduction, DC--DC Converters, Adjustible Speed Drives , Induction Motor Drives: Introduction, Characteristics, Adjustible Speed Drives ,Synchronous Motor Drives : Motor Principles, Adjustible Speed and Servo Drives

Week 12: Networking of Sensors, Actuators and Controllers : The Fieldbus ,The Fieldbus Communication Protocol , Introduction to Production Control Systems

BTETPE 802B

Cryptography and Network Security

4 Credits

Dr. Debdeep Mukhopadhyay IIT Kharagpur

Course Duration: 12 week

Course Outline

The course deals with the underlying principles of cryptography and network security. It develops the mathematical tools required to understand the topic of cryptography. Starting from the classical ciphers to modern day ciphers, the course provides an extensive coverage of the techniques and methods needed for the proper functioning of the ciphers. The course deals with the construction and cryptanalysis of block ciphers, stream ciphers and hash functions. The course defines one way functions and trap-door functions and presents the construction and cryptanalysis of public key ciphers, namely RSA. The key exchange problem and solutions using the DiffieHellman algorithm are discussed. Message Authentication Codes (MAC) and signature schemes are also detailed. The course deals with modern trends in asymmetric key cryptography, namely using Elliptic Curves. The course concludes with the design rationale of network protocols for key exchange and attacks on such protocols

Course Plan:

Introduction and Mathematical Foundations

Introduction, Overview on Modern Cryptography, Number Theory, Probability and Information Theory

Classical Cryptosystems

Classical Cryptosystems, Cryptanalysis of Classical Cryptosystems, Shannon's Theory

Symmetric Key Ciphers

Symmetric Key, Ciphers Modern Block Ciphers (DES), Modern Block Cipher (AES)

Cryptanalysis of Symmetric Key Ciphers

Linear Cryptanalysis, Differential Cryptanalysis, Other Cryptanalytic Techniques, Overview on S-Box Design Principles, Modes of operation of Block Ciphers

Stream Ciphers and Pseudo-randomness

Stream Ciphers, Pseudorandom functions

Hash Functions and MACs

Hash functions: The Merkle Damgard Construction, Message Authentication Codes (MACs)

Asymmetric Key Ciphers: Construction and Cryptanalysis

More Number Theoretic Results ,The RSA Cryptosystem, Primality Testing, Factoring Algorithms , Other attacks on RSA and Semantic Security of RSA ,The Discrete Logarithm Problem (DLP) and the Diffie Hellman Key Exchange algorithm, The ElGamal Encryption Algorithm Cryptanalysis of DLP

Digital Signatures

Signature schemes

Modern Trends in Asymmetric Key Cryptography

Elliptic curve based cryptography

Network Security

Secret Sharing Schemes, A Tutorial on Network Protocols, Kerberos, Pretty Good Privacy (PGP) Secure Socket Layer (SSL), Intruders and Viruses, Firewalls

BTETPE 802C Digital IC Design 4 credits

PROF. JANAKIRAMAN Electrical and Electronics Engineering IIT Madras

Course Duration: 12 weeks

Course Outline: This is a most fundamental Digital Circuit Design course for pursing a major in VLSI. We do not deal with any Verilog coding during this course and instead discuss transistor level circuit design concepts in great detail.

Learning objectives of this course are:

- Characterize the key delay quantities of a standard cell
- Evaluate power dissipated in a circuit (dynamic and leakage)
- Design a circuit to perform a certain functionality with specified speed
- Identify the critical path of a combinational circuit
- Convert the combinational block to pipelined circuit
- Calculate the maximum (worst case) operating frequency of the designed circuit

Course Plan:

- Week 1: The CMOS Inverter construction and Voltage Transfer Characteristics
- Week 2: Resistance and Capacitance and transient response.
- Week 3: Dynamic, Short Circuit and Leakage power Stacking Effect
- Week 4: Combinational Circuit Design and capacitance
- Week 5: Parasitic Delay, Logical Effort and Electrical Effort
- Week 6: Gate sizing and Buffering
- Week 7: Asymmetric gate, Skewed gates, Ratio'ed logic
- Week 8: Dynamic Gates and Domino logic and Static Timing Analysis
- Week 9: Sequential circuits and feedback. Various D flip flop circuits Static and Dynamic
- Week 10: Setup and Hold Time measurement. Timing analysis of latch/ flop based systems
- Week 11: Adders Mirror adder, Carry Skip adder, Carry Select adder, Square Root adder
- Week 12: Multipliers Signed and Unsigned arithmetic, Carry Save Multiplier implementation